Skip to main content

Arteriovenous Malformation in Mice and Men

  • Chapter
Book cover Tumor Angiogenesis

Abstract

Arteriovenous malformations are the most dangerous vascular malformations and extremely difficult to treat. While most of them are sporadic, some are associated with autosomal dominant disorders, such as hereditary hemorrhagic telangiectasia, PTEN hamartoma tumor syndrome, and capillary malformation-arteriovenous malformation. Although important advances have been made in the diagnosis and treatment of arteriovenous malformations, the pathogenic mechanisms remain poorly understood. Yet, this is an essential step towards the development of targeted therapies. Here, we discuss the most recent insights on arteriovenous malformations, on the basis of studies on arteriovenous differentiation in animal models, and the monogenic disorders with a predisposition to arteriovenous malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43:97–110

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Karlsson L, Svensson PA, Ulfhammer E, Ekman M, Jernas M, Carlsson LM, Jern S (2005) Differential global gene expression response patterns of human endothelium exposed to shear stress and intraluminal pressure. J Vasc Res 42:441–452

    Article  PubMed  CAS  Google Scholar 

  • Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, Charlton R, Parums DV, Jowett T, Marchuk DA, Burn J, Diamond AG (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217:42–53

    Article  PubMed  CAS  Google Scholar 

  • Begbie ME, Wallace GM, Shovlin CL (2003) Hereditary haemorrhagic telangiectasia (Osler-Weber-Rendu syndrome): a view from the 21st century. Postgrad Med J 79:18–24

    Article  PubMed  CAS  Google Scholar 

  • Bourdeau A, Dumont DJ, Letarte M (1999) A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 104:1343–1351

    Article  PubMed  CAS  Google Scholar 

  • Bourdeau A, Cymerman U, Paquet ME, Meschino W, McKinnon WC, Guttmacher AE, Becker L, Letarte M (2000a) Endoglin expression is reduced in normal vessels but still detectable in arteriovenous malformations of patients with hereditary hemorrhagic telangiectasia type 1. Am J Pathol 156:911–923

    PubMed  CAS  Google Scholar 

  • Bourdeau A, Faughnan ME, Letarte M (2000b) Endoglindeficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc Med 10:279–285

    Article  PubMed  CAS  Google Scholar 

  • Bourdeau A, Faughnan ME, McDonald ML, Paterson AD, Wanless IR, Letarte M (2001) Potential role of modifier genes influencing transforming growth factor-beta1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. Am J Pathol 158:2011–2020

    PubMed  CAS  Google Scholar 

  • Braverman IM, Keh A, Jacobson BS (1990) Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol 95:422–427

    Article  PubMed  CAS  Google Scholar 

  • Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ, Messina LM, Capobianco AJ, Werb Z, Wang R (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci USA 102:9884–9889

    Article  PubMed  CAS  Google Scholar 

  • Carvalho RL, Jonker L, Goumans MJ, Larsson J, Bouwman P, Karlsson S, Dijke PT, Arthur HM, Mummery CL (2004) Defective paracrine signalling by TGFbeta in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development 131:6237–6247

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Mohr JP (2005) Brain arteriovenous malformations in adults. Lancet Neurol 4:299–308

    Article  PubMed  Google Scholar 

  • Cole SG, Begbie ME, Wallace GM, Shovlin CL (2005) A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 42:577–582

    Article  PubMed  CAS  Google Scholar 

  • Conley BA, Koleva R, Smith JD, Kacer D, Zhang D, Bernabeu C, Vary CP (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279:27440–27449

    Article  PubMed  CAS  Google Scholar 

  • Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, Vanwijck R, Vikkula M (2003) Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 73:1240–1249

    Article  PubMed  CAS  Google Scholar 

  • Fernandez LA, Sanz-Rodriguez F, Zarrabeitia R, Perez-Molino A, Hebbel RP, Nguyen J, Bernabeu C, Botella LM (2005) Blood outgrowth endothelial cells from hereditary haemorrhagic telangiectasia patients reveal abnormalities compatible with vascular lesions. Cardiovasc Res 68:235–248

    Article  CAS  Google Scholar 

  • Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911

    Article  PubMed  CAS  Google Scholar 

  • Fleetwood IG, Steinberg GK (2002) Arteriovenous malformations. Lancet 359:863–873

    Article  PubMed  Google Scholar 

  • Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston G, Yancopoulos GD (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101:15949–15954

    Article  PubMed  CAS  Google Scholar 

  • Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363:852–859

    Article  PubMed  CAS  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753

    Article  PubMed  CAS  Google Scholar 

  • Goumans MJ, Lebrin F, Valdimarsdottir G (2003) Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13:301–307

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Tamura M, Yamada KM (1998) Tumor suppressor PTEN inhibits integrin-and growth factor-mediated mitogenactivated protein (MAP) kinase signaling pathways. J Cell Biol 143:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H, Sasaki J, Yajima N, Horie Y, Hasegawa G, Naito M, Miyazaki J, Suda T, Itoh H, Nakao K, Mak TW, Nakano T, Suzuki A (2005) The PTEN/PI3 K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19:2054–2065

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, Shih TS, Jacks T, Pawson T (1995) Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377:695–701

    Article  PubMed  CAS  Google Scholar 

  • Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130:5281–5290

    Article  PubMed  CAS  Google Scholar 

  • Jerkic M, Rivas-Elena JV, Prieto M, Carron R, Sanz-Rodriguez F, Perez-Barriocanal F, Rodriguez-Barbero A, Bernabeu C, Lopez-Novoa JM (2004) Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J 18:609–611

    PubMed  CAS  Google Scholar 

  • Jerkic M, Rodriguez-Barbero A, Prieto M, Toporsian M, Pericacho M, Rivas-Elena JV, Obreo J, Wang A, Perez-Barriocanal F, Arevalo M, Bernabeu C, Letarte M, Lopez-Novoa JM (2006) Reduced angiogenic responses in adult Endoglin heterozygous mice. Cardiovasc Res 69:845–854

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA, Krantz ID (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109:1354–1358

    Article  PubMed  Google Scholar 

  • Kim I, Ryu YS, Kwak HJ, Ahn SY, Oh JL, Yancopoulos GD, Gale NW, Koh GY (2002) EphB ligand, ephrinB2, suppresses the VEGF and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. FASEB J 16:1126–1128

    PubMed  CAS  Google Scholar 

  • Koul D, Shen R, Garyali A, Ke LD, Liu TJ, Yung WK (2002) MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor-mediated angiogenesis in prostate cancer. Int J Oncol 21:469–475

    PubMed  CAS  Google Scholar 

  • Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18:2469–2473

    Article  PubMed  CAS  Google Scholar 

  • Krings T, Ozanne A, Chng SM, Alvarez H, Rodesch G, Lasjaunias PL (2005) Neurovascular phenotypes in hereditary haemorrhagic telangiectasia patients according to age. Review of 50 consecutive patients aged 1 day-60 years. Neuroradiology 47:711–720

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni SV, Gish G, van der Geer P, Henkemeyer M, Pawson T (2000) Role of p120 Ras-GAP in directed cell movement. J Cell Biol 149:457–470

    Article  PubMed  CAS  Google Scholar 

  • Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100:4495–4501

    Article  PubMed  CAS  Google Scholar 

  • Lasjaunias PL (1997) Vascular diseases in neonates, infants and children. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    PubMed  CAS  Google Scholar 

  • le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375

    Google Scholar 

  • Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028

    Article  PubMed  CAS  Google Scholar 

  • Letarte M, McDonald ML, Li C, Kathirkamathamby K, Vera S, Pece-Barbara N, Kumar S (2005) Reduced endothelial secretion and plasma levels of transforming growth factor-beta1 in patients with hereditary hemorrhagic telangiectasia type 1. Cardiovasc Res 68:155–164

    Article  PubMed  CAS  Google Scholar 

  • Li C, Hampson IN, Hampson L, Kumar P, Bernabeu C, Kumar S (2000) CD105 antagonizes the inhibitory signaling of transforming growth factor beta1 on human vascular endothelial cells. FASEB J 14:55–64

    PubMed  CAS  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/ MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  PubMed  CAS  Google Scholar 

  • McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J, et al. (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    Article  PubMed  CAS  Google Scholar 

  • McDonald MT, Papenberg KA, Ghosh S, Glatfelter AA, Biesecker BB, Helmbold EA, Markel DS, Zolotor A, McKinnon WC, Vanderstoep JL et al (1994) A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34. Nat Genet 6:197–204

    Article  PubMed  CAS  Google Scholar 

  • Meadows KN, Bryant P, Pumiglia K (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276:49289–49298

    Article  PubMed  CAS  Google Scholar 

  • Meadows KN, Bryant P, Vincent PA, Pumiglia KM (2004) Activated Ras induces a proangiogenic phenotype in primary endothelial cells. Oncogene 23:192–200

    Article  PubMed  CAS  Google Scholar 

  • Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128:3359–3370

    PubMed  CAS  Google Scholar 

  • Mulliken JB, Glowacki J (1982) Classification of pediatric vascular lesions. Plast Reconstr Surg 70:120–121

    Article  PubMed  CAS  Google Scholar 

  • Mulliken JB, Young AE (1988) Vascular birthmarks: hemangiomas and malformations. Saunders, Philadelphia

    Google Scholar 

  • Murray P (1926) The physiological principle of minimum. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12:207–214

    Article  PubMed  CAS  Google Scholar 

  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631

    Article  PubMed  CAS  Google Scholar 

  • Pawlikowska L, Tran MN, Achrol AS, Ha C, Burchard E, Choudhry S, Zaroff J, Lawton MT, Castro R, McCulloch CE, Marchuk D, Kwok PY, Young WL (2005) Polymorphisms in transforming growth factor-beta-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations. Stroke 36:2278–2280

    Article  PubMed  CAS  Google Scholar 

  • Pece-Barbara N, Vera S, Kathirkamathamby K, Liebner S, di Guglielmo GM, Dejana E, Wrana JL, Letarte M (2005) Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem 280:27800–27808

    Article  PubMed  CAS  Google Scholar 

  • Pescini F, Sarti C, Pantoni L, Mangiafico S, Bianchi S, Dotti MT, Federico A, Inzitari D (2006) Cerebellar arteriovenous malformation and vertebral artery aneurysm in a CADASIL patient. Acta Neurol Scand 113:62–63

    Article  PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Rodriguez F, Guerrero-Esteo M, Botella LM, Banville D, Vary CP, Bernabeu C (2004) Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem 279:32858–32868

    Article  PubMed  CAS  Google Scholar 

  • Satomi J, Mount RJ, Toporsian M, Paterson AD, Wallace MC, Harrison RV, Letarte M (2003) Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia. Stroke 34:783–789

    Article  PubMed  Google Scholar 

  • Seki T, Hong KH, Oh SP (2006) Nonoverlapping expression patterns of ALK 1 and ALK5 reveal distinct roles of each receptor in vascular development. Lab Invest 86:116–129

    Article  PubMed  CAS  Google Scholar 

  • Shawber CJ, Kitajewski J (2004) Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 26:225–234

    Article  PubMed  CAS  Google Scholar 

  • Shovlin CL, Hughes JM, Tuddenham EG, Temperley I, Perembelon YF, Scott J, Seidman CE, Seidman JG (1994) A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat Genet 6:205–209

    Article  PubMed  CAS  Google Scholar 

  • Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12:107–119

    PubMed  CAS  Google Scholar 

  • Sorensen LK, Brooke BS, Li DY, Urness LD (2003) Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFbeta coreceptor. Dev Biol 261:235–250

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan S, Hanes MA, Dickens T, Porteous ME, Oh SP, Hale LP, Marchuk DA (2003) A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum Mol Genet 12:473–482

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280:1614–1617

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Gu J, Takino T, Yamada KM (1999a) Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 59:442–449

    PubMed  CAS  Google Scholar 

  • Tamura M, Gu J, Tran H, Yamada KM (1999b) PTEN gene and integrin signaling in cancer. J Natl Cancer Inst 91:1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Thoma R(1893) Untersuchungen über die Histogenese une Histomechanik des Gefässsystems. Enke, Stuttgart

    Google Scholar 

  • Tolkacheva T, Chan AM (2000) Inhibition of H-Ras transformation by the PTEN/MMAC1/TEP1 tumor suppressor gene. Oncogene 19:680–689

    Article  PubMed  CAS  Google Scholar 

  • Toporsian M, Gros R, Kabir MG, Vera S, Govindaraju K, Eidelman DH, Husain M, Letarte M (2005) A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ Res 96:684–692

    Article  PubMed  CAS  Google Scholar 

  • Turnbull MM, Humeniuk V, Stein B, Suthers GK (2005) Arteriovenous malformations in Cowden syndrome. J Med Genet 42:e50

    Article  PubMed  CAS  Google Scholar 

  • Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26:328–331

    Article  PubMed  CAS  Google Scholar 

  • Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA 98:5643–5648

    Article  PubMed  CAS  Google Scholar 

  • Vincent P, Plauchu H, Hazan J, Faure S, Weissenbach J, Godet J (1995) A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum Mol Genet 4:945–949

    Article  PubMed  CAS  Google Scholar 

  • Yoon MJ, Cho CH, Lee CS, Jang IH, Ryu SH, Koh GY (2003) Localization of Tie2 and phospholipase D in endothelial caveolae is involved in angiopoietin-1-induced MEK/ ERK phosphorylation and migration in endothelial cells. Biochem Biophys Res Commun 308:101–105

    Article  PubMed  CAS  Google Scholar 

  • You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Lypowy J, Hedhli N, Abdellatif M (2004) Ras GTPaseactivating protein binds to Akt and is required for its activation. J Biol Chem 279:12883–12889

    Article  PubMed  CAS  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    Article  PubMed  CAS  Google Scholar 

  • Zhou XP, Marsh DJ, Hampel H, Mulliken JB, Gimm O, Eng C (2000) Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malformations and lipomatosis. Hum Mol Genet 9:765–768

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Revencu, N., Boon, L., Vikkula, M. (2008). Arteriovenous Malformation in Mice and Men. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics