Skip to main content

Binary Tomography by Iterating Linear Programs from Noisy Projections

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Abstract

In this paper we improve the behavior of a reconstruction algorithm for binary tomography in the presence of noise. This algorithm which has recently been published is derived from a primal-dual subgradient method leading to a sequence of linear programs. The objective function contains a smoothness prior that favors spatially homogeneous solutions and a concave functional gradually enforcing binary solutions. We complement the objective function with a term to cope with noisy projections and evaluate its performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuba, A., Herman, G.: Discrete tomography: A historical overview. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Algorithms, and Applications, pp. 3–34. Birkhäuser, Basel (1999)

    Google Scholar 

  2. Gardner, R., Gritzmann, P.: Discrete tomography: Determination of finite sets by x-rays. Trans. Amer. Math. Soc. 349, 2271–2295 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gritzmann, P., Prangenberg, D., de Vries, S., Wiegelmann, M.: Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography. Int. J. Imag. Syst. Technol. 9, 101–109 (1998)

    Article  Google Scholar 

  4. Herman, G., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  5. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  6. Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.: The discrete radon transform and its approximate inversion via linear programming. Discr. Appl. Math. 75, 39–61 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from discrete x-rays. SIAM J. Optimization 11, 522–546 (2000)

    Article  MATH  Google Scholar 

  8. Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. In: Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA 2003), Palermo, Italy, May 14-16 (2003)

    Google Scholar 

  9. Weber, S., Schüle, T., Schnörr, C., Hornegger, J.: A linear programming approach to limited angle 3d reconstruction from dsa projections. Special Issue of Methods of Information in Medicine 4 (2004) (in press)

    Google Scholar 

  10. Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary tomography by iterating linear programs. Technical report 5/2004, University of Mannheim (2004)

    Google Scholar 

  11. Rockafellar, R.: Convex analysis, 2nd edn. Princeton Univ. Press, Princeton (1972)

    Google Scholar 

  12. Dinh, T.P., Elbernoussi, S.: Duality in d.c. (difference of convex functions) optimization subgradient methods. In: Trends in Mathematical Optimization. Int. Series of Numer. Math., vol. 84, pp. 277–293. Birkhäuser, Basel (1988)

    Google Scholar 

  13. Dinh, T.P., An, L.H.: A d.c. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, S., Schüle, T., Hornegger, J., Schnörr, C. (2004). Binary Tomography by Iterating Linear Programs from Noisy Projections. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics