Combining Rules for Text Categorization Using Dempster’s Rule of Combination

  • Yaxin Bi
  • Terry Anderson
  • Sally McClean
Conference paper

DOI: 10.1007/978-3-540-28651-6_67

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3177)
Cite this paper as:
Bi Y., Anderson T., McClean S. (2004) Combining Rules for Text Categorization Using Dempster’s Rule of Combination. In: Yang Z.R., Yin H., Everson R.M. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2004. IDEAL 2004. Lecture Notes in Computer Science, vol 3177. Springer, Berlin, Heidelberg

Abstract

In this paper, we present an investigation into the combination of rules for text categorization using Dempster’s rule of combination. We first propose a boosting-like technique for generating multiple sets of rules based on rough set theory, and then describe how to use Dempster’s rule of combination to combine the classification decisions produced by multiple sets of rules. We apply these methods to 10 out of the 20-newsgroups – a benchmark data collection, individually and in combination. Our experimental results show that the performance of the best combination of the multiple sets of rules on the 10 groups of the benchmark data can achieve 80.47% classification accuracy, which is 3.24% better than that of the best single set of rules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yaxin Bi
    • 1
    • 2
  • Terry Anderson
    • 3
  • Sally McClean
    • 3
  1. 1.School of Computer ScienceQueen’s University of BelfastBelfastUK
  2. 2.School of Biomedical ScienceUniversity of UlsterColeraine, LondonderryUK
  3. 3.Faculty of EngineeringUniversity of UlsterNewtownabbey, Co. AntrimUK

Personalised recommendations