A New Variational Framework for Rigid-Body Alignment

  • Tsuyoshi Kato
  • Koji Tsuda
  • Kentaro Tomii
  • Kiyoshi Asai
Conference paper

DOI: 10.1007/978-3-540-27868-9_17

Volume 3138 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Kato T., Tsuda K., Tomii K., Asai K. (2004) A New Variational Framework for Rigid-Body Alignment. In: Fred A., Caelli T.M., Duin R.P.W., Campilho A.C., de Ridder D. (eds) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2004. Lecture Notes in Computer Science, vol 3138. Springer, Berlin, Heidelberg

Abstract

We present a novel algorithm for estimating the rigid-body transformation of a sequence of coordinates, aiming at the application to protein structures. Basically the sequence is modeled as a hidden Markov model where each state outputs an ellipsoidal Gaussian. Since maximum likelihood estimation requires to solve a complicated optimization problem, we introduce a variational estimation technique, which performs singular value decomposition in each step. Our probabilistic algorithm allows to superimpose a number of sequences which are rotated and translated in arbitrary ways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tsuyoshi Kato
    • 1
  • Koji Tsuda
    • 1
    • 2
  • Kentaro Tomii
    • 1
  • Kiyoshi Asai
    • 1
    • 3
  1. 1.AIST Computational Biology Research CenterTokyoJapan
  2. 2.Max Planck Institute of Biological CyberneticsTübingenGermany
  3. 3.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan