Modular Proof Systems for Partial Functions with Weak Equality

  • Harald Ganzinger
  • Viorica Sofronie-Stokkermans
  • Uwe Waldmann
Conference paper

DOI: 10.1007/978-3-540-25984-8_10

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3097)
Cite this paper as:
Ganzinger H., Sofronie-Stokkermans V., Waldmann U. (2004) Modular Proof Systems for Partial Functions with Weak Equality. In: Basin D., Rusinowitch M. (eds) Automated Reasoning. IJCAR 2004. Lecture Notes in Computer Science, vol 3097. Springer, Berlin, Heidelberg

Abstract

The paper presents a modular superposition calculus for the combination of first-order theories involving both total and partial functions. Modularity means that inferences are pure, only involving clauses over the alphabet of either one, but not both, of the theories. The calculus is shown to be complete provided that functions that are not in the intersection of the component signatures are declared as partial. This result also means that if the unsatisfiability of a goal modulo the combined theory does not depend on the totality of the functions in the extensions, the inconsistency will be effectively found. Moreover, we consider a constraint superposition calculus for the case of hierarchical theories and show that it has a related modularity property. Finally we identify cases where the partial models can always be made total so that modular superposition is also complete with respect to the standard (total function) semantics of the theories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Harald Ganzinger
    • 1
  • Viorica Sofronie-Stokkermans
    • 1
  • Uwe Waldmann
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations