Skip to main content

Analysis of the Topology Preservation of Accelerated Growing Neural Gas in the Representation of Bidimensional Objects

  • Conference paper
Book cover Current Topics in Artificial Intelligence (TTIA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3040))

Included in the following conference series:

Abstract

Self-organizing neural networks endeavour to preserve the topology of an input space by means of competitive learning. This capacity is used for the representation of objects and their motion. In addition, these applications usually have real-time constraints imposed on them. This paper describes several variants of a Growing Neural Gas self-organizing network that accelerate the learning process. However, in some cases this acceleration causes a loss in topology preservation and, therefore, in the quality of the representation. Our study quantifies topology preservation using different measures to establish the most suitable learning parameters, depending on the size of the network and on the time available for adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martinetz, T., Schulten, K.: Topology Representing Networks. Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  2. Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  3. Flórez, F., García, J.M., García, J., Hernández, A.: Representation of 2D Objects with a Topology Preserving Network. In: Proceedings of the 2nd International Workshop on Pattern Recognition in Information Systems (PRIS 2002), Alicante, pp. 267–276. ICEIS Press (2001)

    Google Scholar 

  4. Flórez, F., García, J.M., García, J., Hernández, A.: Hand Gesture Recognition Following the Dynamics of a Topology-Preserving Network. In: Proc. of the 5th IEEE Intern. Conference on Automatic Face and Gesture Recognition, pp. 318–323. IEEE, Inc., Washington (2001)

    Google Scholar 

  5. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  6. Cheng, G., Zell, A.: Double Growing Neural Gas for Disease Diagnosis. In: Proceedings of Artificial Neural Networks in Medicine and Biology Conference (ANNIMAB-1), Goteborg, vol. 5, pp. 309–314. Springer, Heidelberg (2000)

    Google Scholar 

  7. Bauer, H.-U., Pawelzik, K.R.: Quantifying the Neighborhood Preservation of Self- Organizing Feature Maps. IEEE Transactions on Neural Networks 3(4), 570–578 (1992)

    Article  Google Scholar 

  8. Flórez, F., García, J.M., García, J., Hernández, A.: Producto Topográfico Geodésico: Mejora para medir la preservación de la topología de redes neuronales auto-organizativas. In: Proceedings of the X Conferencia de la Asociación Española de Inteligencia Artificial (CAEPIA 2003), San Sebastián, vol. II, pp. 87–90. Servicio Editorial de la Universidad del País Vasco (2003)

    Google Scholar 

  9. Villmann, T., Der, R., Herrmann, M., Martinetz, T.M.: Topology Preservation in Self- Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8(2), 256–266 (1997)

    Article  Google Scholar 

  10. Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)

    Google Scholar 

  11. Martinetz, T., Schulten, K.: A Neural-Gas Network Learns Topologies. In: Kohonen, T., Mäkisara, K., Simula, O. (eds.) Artificial Neural Networks, vol. 1, pp. 397–402 (1991)

    Google Scholar 

  12. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when required. Neural Networks 15, 1041–1058 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flórez Revuelta, F., García Chamizo, J.M., García Rodríguez, J., Hernández Sáez, A. (2004). Analysis of the Topology Preservation of Accelerated Growing Neural Gas in the Representation of Bidimensional Objects. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, JL. (eds) Current Topics in Artificial Intelligence. TTIA 2003. Lecture Notes in Computer Science(), vol 3040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25945-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25945-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22218-7

  • Online ISBN: 978-3-540-25945-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics