Clustering XML Documents by Structure

  • Theodore Dalamagas
  • Tao Cheng
  • Klaas-Jan Winkel
  • Timos Sellis
Conference paper

DOI: 10.1007/978-3-540-24674-9_13

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3025)
Cite this paper as:
Dalamagas T., Cheng T., Winkel KJ., Sellis T. (2004) Clustering XML Documents by Structure. In: Vouros G.A., Panayiotopoulos T. (eds) Methods and Applications of Artificial Intelligence. SETN 2004. Lecture Notes in Computer Science, vol 3025. Springer, Berlin, Heidelberg

Abstract

This work explores the application of clustering methods for grouping structurally similar XML documents. Modeling the XML documents as rooted ordered labeled trees, we apply clustering algorithms using distances that estimate the similarity between those trees in terms of the hierarchical relationships of their nodes. We suggest the usage of tree structural summaries to improve the performance of the distance calculation and at the same time to maintain or even improve its quality. Experimental results are provided using a prototype testbed.

Keywords

XML structural similarity tree distance structural summary clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Theodore Dalamagas
    • 1
  • Tao Cheng
    • 2
  • Klaas-Jan Winkel
    • 3
  • Timos Sellis
    • 1
  1. 1.School of Electr. and Comp. EngineeringNational Technical University of AthensGreece
  2. 2.Dept. of Computer ScienceUniversity of California, Santa BarbaraUSA
  3. 3.Faculty of Computer ScienceUniversity of Twentethe Netherlands

Personalised recommendations