Cholesky Factorization of Matrices in Parallel and Ranking of Graphs

  • Dariusz Dereniowski
  • Marek Kubale
Conference paper

DOI: 10.1007/978-3-540-24669-5_127

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)
Cite this paper as:
Dereniowski D., Kubale M. (2004) Cholesky Factorization of Matrices in Parallel and Ranking of Graphs. In: Wyrzykowski R., Dongarra J., Paprzycki M., Waśniewski J. (eds) Parallel Processing and Applied Mathematics. PPAM 2003. Lecture Notes in Computer Science, vol 3019. Springer, Berlin, Heidelberg

Abstract

The vertex ranking problem is closely related to the problem of finding the elimination tree of minimum height for a given graph. This implies that the problem has applications in the parallel Cholesky factorization of matrices. We describe the connection between this model of graph coloring and the matrix factorization. We also present a polynomial time algorithm for finding edge ranking of complete bipartite graphs. We use it to design an O(m2 + d) algorithm for edge ranking of graphs obtained by removing O(log m) edges from a complete bipartite graph, where d is a fixed number. Then we extend our results to complete k-partite graphs for any fixed k>2. In this way we give a new class of matrix factorization instances that can be optimally solved in polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dariusz Dereniowski
    • 1
  • Marek Kubale
    • 1
  1. 1.Department of Algorithms and Modeling of SystemsGdańsk University of TechnologyPoland

Personalised recommendations