Skip to main content

On the Significance of Exposure Time in Computational Blood Damage Estimation

  • Conference paper
  • First Online:
Book cover High-Performance Scientific Computing (JHPCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10164))

Abstract

The reliability of common stress-based power law models for hemolysis estimations in blood pumps is still not satisfying. Stress-based models are based on an instantaneous shear stress measure. Therefore, such models implicitly assume that red blood cells deform immediately due to the action of forces. In contrast, a strain-based model considers the entire deformation history of the cells. By applying a viscoelastic tensor equation for the stress computation, the effect of exposure time is represented as a biophysical phenomenon. Comparisons of stress-based and strain-based hemolysis models in a centrifugal blood pump show very significant differences. Stress peaks with short exposure time contribute to the overall hemolysis in the stress-based model, whereas regions with increased shear and long exposure time are responsible for damage in the strain-based model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, D., Behr, M., Coronado-Matutti, O., Pasquali, M.: Estimation of hemolysis in centrifugal blood pumps using morphology tensor approach. In: Bathe, K. (ed.) Proceedings of 3rd MIT Conference on Computational Fluid and Solid Dynamics, pp. 578–582. Elsevier Ltd. (2005)

    Google Scholar 

  2. Arora, D., Behr, M., Pasquali, M.: A tensor-based measure for estimating blood damage. Artif. Organs 28, 1002–1015 (2004). errata in Artificial Organs 36(5), 500 (2012)

    Article  Google Scholar 

  3. Arora, D., Behr, M., Pasquali, M.: Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif. Organs 30(7), 539–547 (2006)

    Article  Google Scholar 

  4. Blackshear, P., Blackshear, G.: Mechanical hemolysis. In: Skalak, R., Chien, S. (eds.) Handbook of Bioengineering, p. 15.1–15.19. McGraw-Hill, New York (1987)

    Google Scholar 

  5. Blackshear, P., Dorman, F., Steinbach, J.: Some mechanical effects that influence hemolysis. ASAIO J. 11(1), 112–117 (1965)

    Article  Google Scholar 

  6. Bludszuweit, C.: Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19(7), 590–596 (1995)

    Article  Google Scholar 

  7. Bronkhorst, P., Streekstra, G., Grimbergen, J., Nijhof, E., Sixma, J., Brakenhoff, G.: A new method to study shape recovery of red blood cells using multiple optical trapping. Biophys. J. 69(5), 1666–1673 (1995)

    Article  Google Scholar 

  8. Chien, S.: Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168(3934), 977–979 (1970)

    Article  Google Scholar 

  9. Chien, S.: Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49, 177–192 (1987)

    Article  Google Scholar 

  10. Evans, E., LaCelle, P.: Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45, 29–43 (1975)

    Google Scholar 

  11. Farinas, M., Garon, A.: Fast three-dimensional numerical hemolysis approximation. Artif. Organs 28(11), 1016–1025 (2004)

    Article  Google Scholar 

  12. Farinas, M., Garon, A., Lacasse, D., N’dri, D.: Asymptotically consistent numerical approximation of hemolysis. J. Biomed. Eng. 128, 688–696 (2006)

    Google Scholar 

  13. Fischer, T.M.: Shape memory of human red blood cells. Biophys. J. 86, 3304–3313 (2004)

    Article  Google Scholar 

  14. Fischer, T., Stohr-Lissen, M., Schmid-Schönbein, H.: The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202(4370), 894–896 (1978)

    Article  Google Scholar 

  15. Gesenhues, L., Pauli, L., Behr, M.: Strain-based blood damage estimation for computational design of ventricular assist devices. Int. J. Artif. Organs 39(4), 166–170 (2016)

    Article  Google Scholar 

  16. Giersiepen, M., Wurzinger, L., Opitz, R., Reul, H.: Estimation of shear stress-related blood damage in heart valve prostheses - in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5), 300–306 (1990)

    Google Scholar 

  17. Hénon, S., Lenormand, G., Richert, A., Gallet, F.: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76(2), 1145–1151 (1999)

    Article  Google Scholar 

  18. Keller, S., Skalak, R.: Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 27–47 (1982)

    Article  MATH  Google Scholar 

  19. Leverett, L., Hellums, J., Alfrey, C., Lynch, E.: Red blood cell damage by shear stress. Biophys. J. 12, 257–273 (1972)

    Article  Google Scholar 

  20. Maffettone, P., Minale, M.: Equation of change for ellipsoidal drops in viscous flow. J. Non-Newton. Fluid Mech. 78, 227–241 (1998)

    Article  MATH  Google Scholar 

  21. Nicoud, F., Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids (1994-present) 23(085106), 1–12 (2011)

    Google Scholar 

  22. Pauli, L., Both, J., Behr, M.: Stabilized finite element method for flows with multiple reference frames. Int. J. Numer. Meth. Fluids 78, 657–669 (2015)

    Article  MathSciNet  Google Scholar 

  23. Pauli, L., Nam, J., Pasquali, M., Behr, M.: Transient stress-based and strain-based hemolysis estimation in a simplified blood pump. Int. J. Numer. Meth. Biomed. Eng. 29(10), 1148–1160 (2013)

    Article  MathSciNet  Google Scholar 

  24. Probst, M.: Robust Shape Optimization for Incompressible Flow of Shear-Thinning Fluids. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2013)

    Google Scholar 

  25. Rand, R.: Mechanical properties of the red cell membrane: II. viscoelastic breakdown of the membrane. Biophys. J. 4(4), 303–316 (1964)

    Article  Google Scholar 

  26. Riveros-Moreno, V., Wittenberg, J.: The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J. Biol. Chem. 247(3), 895–901 (1972)

    Google Scholar 

  27. Schmid-Schönbein, H., Wells, R.: Fluid drop-like transition of erythrocytes under shear. Science 165(3890), 288–291 (1969)

    Article  Google Scholar 

  28. Stewart, S., Hariharan, P.: Computational round robin #2 (model blood pump), October 2013. https://fdacfd.nci.nih.gov/interlab_study_2_blood_pump

  29. Wurzinger, L., Opitz, R., Eckstein, H.: Mechanical blood trauma: an overview. Angeiologie 38, 81–97 (1986)

    Google Scholar 

  30. Zhang, T., Taskin, M., Fang, H., Pampori, A., Jarvik, R., Griffith, B., Wu, Z.: Study of flow-induced hemolysis using novel couette-type blood-shearing devices. Artif. Organs 35(12), 1180–1186 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We like to thank Jaewook Nam and Matteo Pasquali for their contributions to previous implementations of the hemolysis models. In addition, we gratefully acknowledge the support by the DFG program GSC 111 (AICES Graduate School). Computing resources were provided by the RWTH Aachen University IT Center and by the Forschungszentrum Jülich John von Neumann Institute for Computing under the Jülich Aachen Research Alliance (JARA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Pauli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pauli, L., Behr, M. (2017). On the Significance of Exposure Time in Computational Blood Damage Estimation. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics