Skip to main content

Influence of Low-Level Jets and Gravity Waves on Turbulent Fluxes

  • Chapter
  • First Online:
Energy and Matter Fluxes of a Spruce Forest Ecosystem

Part of the book series: Ecological Studies ((ECOLSTUD,volume 229))

Abstract

Atmospheric waves and local wind phenomena in the atmospheric boundary layer are common forms of air motions observed above the forest canopy at night. Low-level jets with duration times of several hours and the gravity wave event were detected by SODAR-RASS and miniSODAR systems installed in the Fichtelgebirge Mountains in Germany.

Varying wind directions with low turbulence and wind speed are observed at times of sunrise and sunset. At midday, secondary circulations due to convection over a big clear-cut are possible. The existence of a low-level jet seems to be independent of the general weather situation. At nighttimes and during the morning hours the profile of the wind vector often shows a strong turn of the wind direction with increasing height.

As a result, gravity wave generation was connected to the wind shear effect and change of the wind direction observed in the ascending low-level jet. The observed period and vertical wavelength were obtained by application of the wavelet transform, allowing the gravity wave to be filtered from the mean wind flow. A comprehensive study of gravity wave parameters was done using the linear wave theory. The analysis of the wind perturbation profiles indicates a downward wave energy propagation above the canopy level. The eddy-covariance measurements are used to investigate the impact of the gravity wave on the generation of coherent structures and turbulent transport. It was shown that coherent structures have smaller temporal scales when the gravity wave occurs, in contrast to the period before the wave was detected. It was found that there was a significant impact of the gravity wave on the momentum exchange, and that this led to the higher transport of the momentum during the ejection phases of coherent structures, whereas the sweep phases were mostly responsible for transport in the absence of the gravity wave in the mean flow.

A. Serafimovich, J. Hübner, T. Foken: Affiliation during the work at the Waldstein sites: Department of Micrometeorology, University of Bayreuth, Bayreuth, Germany

H.F. Duarte: Affiliation during the work at the Waldstein sites: Atmospheric Biogeosciences Lab, The University of Georgia, Griffin, GA 30223, USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonia RA (1981) Conditional sampling in turbulence measurements. Ann Rev Fluid Mech 13:131–156. doi:10.1146/annurev.fl.13.010181.001023

    Article  Google Scholar 

  • Baas AFD, Driedonks AGM (1985) Internal gravity waves in a stably stratified boundary layer. Bound-Layer Meteorol 31:303–323

    Article  Google Scholar 

  • Baldocchi D, Falge E, Lianhong G, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during cases-99. Bound-Layer Meteorol 105:221–252

    Article  Google Scholar 

  • Bergström H, Högström U (1989) Turbulent exchange above a pine forest II. Organized structures. Bound-Layer Meteorol 49:231–263. doi:10.1007/BF00120972

    Article  Google Scholar 

  • Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38:283–290

    Google Scholar 

  • Bonner WD (1968) Climatology of the low level jet. Mon Weather Rev 96:833–850

    Article  Google Scholar 

  • Brunet Y, Collineau S (1994) Wavelet analysis of diurnal and nocturnal turbulence above a maize canopy. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics, wavelet analysis and its applications, vol 4. Academic Press, San Diego, pp 129–150

    Google Scholar 

  • Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Bound-Layer Meteorol 94:139–163. doi:10.1023/A:1002406616227

    Article  Google Scholar 

  • Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Bound-Layer Meteorol 112:129–157. doi:10.1023/B:BOUN.0000020160.28184.a0

    Article  Google Scholar 

  • Chen J, Hu F (2003) Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China. Bound.-Layer Meteorol 107:429–444. doi:10.1023/A:1022162030155

    Article  Google Scholar 

  • Cheng Y, Parlange MB, Brutsaert W (2005) Pathology of Monin-Obukhov similarity in the stable boundary layer. J Geophys Res 110:D06,101. doi:10.1029/2004JD004923

    Google Scholar 

  • Cho J (1995) Inertio-gravity wave parameter estimation from cross-spectral analysis. J Geophys Res 100:18,727–18,737

    Article  Google Scholar 

  • Clifford SF, Kaimal JC, Lataitis RJ, Strauch RG (1994) Ground-based remote profiling in atmospheric studies - an overview. In: Proceedings of the IEEE, vol 82, pp 313–355

    Article  Google Scholar 

  • Eckermann S, Vincent R (1989) Falling sphere observations gravity waves motions in the upper stratosphere over Australia. Pageoph 130:509–532

    Article  Google Scholar 

  • Einaudi F, Finnigan JJ (1993) Wave-turbulence dynamics in the stably stratified boundary layer. J Atmos Sci 50:1841–1864. doi:10.1175/1520–0469(1993)050 < 1841:WTDITS > 2.0.CO;2

    Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • Foken T, Meixner F, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site results of the EGER experiment. Atmos Chem Phys 12:1923–1950. doi:10.5194/acp-12-1923-2012

    Article  CAS  Google Scholar 

  • Foster RC, Vianey F, Drobinski P, Carlotti P (2006) Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer. Bound-Layer Meteorol 120:229–255. doi:10.1007/s10546-006-9054-8

    Article  Google Scholar 

  • Gao W, Shaw RH, Paw U KT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Bound-Layer Meteorol 47:349–377. doi:10.1007/BF00122339

    Article  Google Scholar 

  • Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz chatchments in NE Bavaria, Germany. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment: ecological Studies, vol 172. Springer, Heidelberg, pp 15–41

    Chapter  Google Scholar 

  • Gill AE (1982) Atmosphere-Ocean dynamics. Academic, San Diego

    Google Scholar 

  • Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier, New York

    Google Scholar 

  • Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. J Math Anal 15:723–736

    Google Scholar 

  • Guest FM, Reeder MJ, Marks CJ, Karoly DJ (2000) Inertia-gravity waves observed in the lower stratosphere over Macquarie Island. J Atmos Sci 57:737–752

    Article  Google Scholar 

  • Hoffmann P, Rapp M, Serafimovich A, Latteck R (2005) On the occurrence and formation of multiple layers of polar mesosphere summer echoes. Geophys Res Lett 32, L05812. doi:10.1029/2004GL021409

    Article  Google Scholar 

  • Holton J (1967) The diurnal boundary layer wind oscillation above sloping terrain. Tellus 19:199–205

    Article  Google Scholar 

  • Hübner J, Olesch J, Falke H, Meixner FX, Foken T (2014) A horizontal mobile measuring system for atmospheric quantities. Atmos Meas Tech 7:2967–2980

    Article  Google Scholar 

  • Karipot A, Leclerc MY, Zhang G, Martin T, Starr G, Hollinger D, McCaughey JH, Hendrey GR (2006) Nocturnal CO2 exchange over a tall forest canopy associated with intermittent low-level jet activity. Theor Appl Climatol 85:243–248

    Article  Google Scholar 

  • Katul G, Kuhn G, Schieldge J, Hsieh CI (1997) The ejection-sweep character of scalar fluxes in the unstable surface layer. Bound-Layer Meteorol 83:1–26. doi:10.1023/A:1000293516830

    Article  Google Scholar 

  • King JC, Mobbs SD, Darby MS, Rees JM (1987) Observations of an internal gravity wave in the lower troposphere at Halley, Antarctica. Bound-Layer Meteorol 39:1–13. doi:10.1007/BF00121862

    Article  Google Scholar 

  • Koch SE, O’Handley C (1997) Operational forecasting and detection of mesoscale gravity waves. Wea Forecast 12:253–281. doi:10.1175/1520-0434(1997)012 < 0253:OFADOM > 2.0.CO;2

    Google Scholar 

  • Kronland-Martinet R, Morlet J, Grossmann A (1987) Analysis of sound patterns through wavelet transforms. Int J Pattern Recognit Artif Intell 1:273–302

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35:385–412

    Article  Google Scholar 

  • Kunze E (1985) Near-inertial wave propagation in geostrophic shear. J Phys Oceanogr 15:544–565

    Article  Google Scholar 

  • Lee X, Neumann H, Hartog G, Mickle R, Fuentes J, Black T, Yang P, Blanken P (1997) Observation of gravity waves in a boreal forest. Bound-Layer Meteorol 84:383–398. doi:10.1023/A:1000454030493

    Article  Google Scholar 

  • Lehmann V, Dibbern J, Görsdorf U, Neuschaefer J, Steinhagen H (2003) The new operational UHF wind profiler radars of the deutscher wetterdienst. In: Wandinger U, Engelmann R, Schmieder K (eds) 6th International Symposium on Tropospheric Proling (ISTP) - extended abstracts. Institute for Tropospheric Research, pp 489–491

    Google Scholar 

  • Lindzen RS, Tung KK (1976) Banded convective activity and ducted gravity waves. Mon Weather Rev 104:1602–1617. doi:10.1175/1520-0493(1976)1048 < 1602:BCAADG > 2.0.CO;2

    Google Scholar 

  • Maitani T, Shaw RH (1990) Joint probability analysis of momentum and heat fluxes at a deciduous forest. Bound-Layer Meteorol 52:283–300. doi:10.1007/BF00122091

    Article  Google Scholar 

  • Nappo CJ (2012) An introduction to atmospheric gravity waves. International geophysics series, vol 102. Academic, San Diego

    Google Scholar 

  • Nappo CJ, Miller DR, Hiscox AL (2008) Wave-modified flux and plume dispersion in the stable boundary layer. Bound-Layer Meteorol 129:211–223. doi:10.1007/s10546-008-9315-9

    Article  Google Scholar 

  • Paw U KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61:55–68

    Article  Google Scholar 

  • Pecnick MJ, Young JA (1984) Mechanics of a strong subsynoptic gravity wave deduced from satellite and surface observations. J Atmos Sci 41:1850–1862. doi:10.1175/1520-0469(1984)041 < 1850:MOASSG > 2.0.CO;2

    Google Scholar 

  • Pike CJ (1994) Analysis of high resolution marine seismic data using wavelet transform. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Wavelet analysis and its applications, vol 4. Academic, San Diego, pp 183–211

    Chapter  Google Scholar 

  • Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Ann Rev Fluid Mech 13:97–129

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound-Layer Meteorol 78:351–382. doi:10.1007/BF00120941

    Article  Google Scholar 

  • Rees JM, Staszewskib WJ, Winklerc JR (2001) Case study of a wave event in the stable atmospheric boundary layer overlying an Antarctic Ice Shelf using the orthogonal wavelet transform. Dyn Atmos Oceans 34:245–261. doi:10.1016/S0377-0265(01)00070-7

    Article  Google Scholar 

  • Sato K (1994) A statistical study of the structure, saturation and sources of inertia-gravity waves in the lower stratosphere observed with the MU radar. J Atmos Terr Phys 56:755–774

    Article  Google Scholar 

  • Sauvageot H (1992) Radar meteorology. Artech House, Boston

    Google Scholar 

  • Serafimovich A, Thomas C, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Layer Meteorol 140:429–451. doi:10.1007/s10546-011-9619-z

    Article  Google Scholar 

  • Shaw RH, Paw U KT, Gao W (1989) Detection of temperature ramps and flow structures at a deciduous forest site. Agric For Meteorol 47:123–138

    Article  Google Scholar 

  • Smedman AS, Bergström H, Högström U (1995) Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Bound-Layer Meteorol 76:211–232. doi:10.1007/BF00709352

    Article  Google Scholar 

  • Staudt K, Foken T (2007) Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site. Arbeitsergebnisse, Universität Bayreuth, Abt Mikrometeorologie. Print, ISSN:1614-8916 35:37

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht/Boston/London

    Book  Google Scholar 

  • Sun J, Lenschow DH, Burns SP, Banta RM, Newsom RK, Coulter R, Frasier S, Ince T, Nappo C, Balsley BB, Jensen M, Mahrt L, Miller D, Skelly B (2003) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound-Layer Meteorol 110:255–279. doi:10.1023/A:1026097926169

    Article  Google Scholar 

  • Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80:91–104. doi:10.1007/s00704-004-0093-0

    Article  Google Scholar 

  • Thomas C, Foken T (2007a) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Layer Meteorol 123:317–337. doi:10.1007/s10546-006-9144-7

    Article  Google Scholar 

  • Thomas C, Foken T (2007b) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound-Layer Meteorol 122:123–147. doi:10.1007/s10546-006-9087-z

    Article  Google Scholar 

  • Thomas C, Mayer JC, Meixner FX, Foken T (2006) Analysis of low-frequency turbulence above tall vegetation using a doppler sodar. Bound-Layer Meteorol 119:563–587

    Article  Google Scholar 

  • Thompson R (1978) Observation of inertial waves in the stratosphere. Q J R Meteorol Soc 104:691–698

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14:512–526. doi:10.1175/1520-0426(1997)014 < 0512:QCAFSP > 2.0.CO;2

    Google Scholar 

  • Vincent R, Fritts D (1987) A climatology of gravity wave motions in the mesopause region at Adelaide, Australia. J Atmos Sci 44:748–760

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150. doi:10.1023/A:1018966204465

    Article  Google Scholar 

  • Zhang F, Wang S, Plougonven R (2004) Uncertainties in using the hodograph method to retrieve gravity wave characteristics from individual soundings. Geophys Res Lett 31:L11110. doi:10.1029/2004GL019841

    Google Scholar 

  • Zink F, Vincent R (2001) Wavelet analysis of stratospheric gravity wave packets over Macquarie Island. J Geophys Res 106:10275–10288

    Article  Google Scholar 

  • Zülicke C, Peters D (2006) Simulation of inertiagravity waves in a poleward-breaking Rossby wave. J Atmos Sci. doi:10.1175/JAS3805.1

    Google Scholar 

Download references

Acknowledgements

The project was funded by the German Science Foundation (FO 226/16-1, ME2100/4-1 and FO 226/21-1). The authors wish to acknowledge the technical support given by the staff of the Bayreuth Center for Ecology and Environmental Research (BayCEER) of the University of Bayreuth, and the German Weather Service for providing the windprofiler data. The authors also wish to gratefully acknowledge Stephanie Schier (now Dix) for her support during work on her Master’s Thesis and all those who supported the field measurements, especially Lukas Siebicke, Katharina Staudt, Johannes Lüers, and Johannes Olesch for advice, comments, and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Serafimovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Serafimovich, A., Hübner, J., Leclerc, M.Y., Duarte, H.F., Foken, T. (2017). Influence of Low-Level Jets and Gravity Waves on Turbulent Fluxes. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_11

Download citation

Publish with us

Policies and ethics