Skip to main content

Mouse Models of Acute Lung Injury

  • Chapter
  • First Online:
Acute Lung Injury and Repair

Part of the book series: Respiratory Medicine ((RM))

Abstract

Acute respiratory distress syndrome or ARDS remains a devastating complication of critical illness, resulting in significant annual morbidity, mortality, and healthcare expenditures. Although much is known about the physiology of ARDS, many aspects of its pathogenesis remain incompletely understood, and no effective pharmacologic therapies have been identified to date. Because of this, research focused on ARDS and its preclinical animal model correlate, acute lung injury, remains a priority for scientists focused on lung diseases, critical illness, and trauma. Mouse model systems allow the use of genetic models and a wide range of reagents to pursue highly mechanistic studies into the cellular and molecular mechanisms of acute lung injury. However, the challenges of using mice to study acute lung injury include identifying appropriate, clinically relevant models and integrating cellular and molecular data with physiological measurements of lung injury. This chapter provides a brief review of the advantages and challenges of mouse models and reviews different models of acute lung injury. It also includes practical information on specific methods to help the new investigator develop mouse models of acute lung injury in his or her laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–93. doi:10.1056/NEJMoa050333.

    Article  CAS  PubMed  Google Scholar 

  2. Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:293–301.

    Article  CAS  PubMed  Google Scholar 

  3. Jia X, Malhotra A, Saeed M, Mark RG, Talmor D. Risk factors for ARDS in patients receiving mechanical ventilation for > 48 h. Chest. 2008;133:853–61. doi:10.1378/chest.07-1121.

    Article  PubMed  Google Scholar 

  4. Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24. doi:10.1097/01.CCM.0000133019.52531.30.

    Article  PubMed  Google Scholar 

  5. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–49. doi:10.1056/NEJM200005043421806.

    Article  CAS  PubMed  Google Scholar 

  6. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. 2012. p. 2526–33. doi:10.1001/jama.2012.5669.

  7. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. 2011. p. 725–38. doi:10.1165/rcmb.2009-0210ST.

  8. Lorè NI, Iraqi FA, Bragonzi A. Host genetic diversity influences the severity of Pseudomonas aeruginosa pneumonia in the Collaborative Cross mice. BMC Genet. 2015;16:106. doi:10.1186/s12863-015-0260-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferris MT, Aylor DL, Bottomly D, Whitmore AC, Aicher LD, Bell TA, et al. Modeling host genetic regulation of influenza pathogenesis in the collaborative cross. PLoS Pathog. 2013;9:e1003196. doi:10.1371/journal.ppat.1003196.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prows DR, Gibbons WJ, Smith JJ, Pilipenko V, Martin LJ. Age and sex of mice markedly affect survival times associated with hyperoxic acute lung injury. PLoS ONE. 2015;10:e0130936. doi:10.1371/journal.pone.0130936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rutledge H, Aylor DL, Carpenter DE, Peck BC, Chines P, Ostrowski LE, et al. Genetic regulation of Zfp30, CXCL1, and neutrophilic inflammation in murine lung. Genetics. 2014;198:735–45. doi:10.1534/genetics.114.168138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nichols JL, Gladwell W, Verhein KC, Cho H-Y, Wess J, Suzuki O, et al. Genome-wide association mapping of acute lung injury in neonatal inbred mice. FASEB J. 2014;28:2538–50. doi:10.1096/fj.13-247221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Howden R, Cho H-Y, Miller-DeGraff L, Walker C, Clark JA, Myers PH, et al. Cardiac physiologic and genetic predictors of hyperoxia-induced acute lung injury in mice. Am J Respir Cell Mol Biol. 2012;46:470–8. doi:10.1165/rcmb.2011-0204OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alm A-S, Li K, Chen H, Wang D, Andersson R, Wang X. Variation of lipopolysaccharide-induced acute lung injury in eight strains of mice. Respir Physiol Neurobiol. 2010;171:157–64. doi:10.1016/j.resp.2010.02.009.

    Article  CAS  PubMed  Google Scholar 

  15. Hudak BB, Zhang LY, Kleeberger SR. Inter-strain variation in susceptibility to hyperoxic injury of murine airways. Pharmacogenetics. 1993;3:135–43.

    Article  CAS  PubMed  Google Scholar 

  16. Chia R, Achilli F, Festing MFW, Fisher EMC. The origins and uses of mouse outbred stocks. Nat Genet. 2005;37:1181–6. doi:10.1038/ng1665.

    Article  CAS  PubMed  Google Scholar 

  17. Festing MFW. Principles: the need for better experimental design. Trends Pharmacol Sci. 2003;24:341–5. doi:10.1016/S0165-6147(03)00159-7.

    Article  CAS  PubMed  Google Scholar 

  18. Prows DR, Winterberg AV, Gibbons WJ, Burzynski BB, Liu C, Nick TG. Reciprocal backcross mice confirm major loci linked to hyperoxic acute lung injury survival time. Physiol Genomics. 2009;38:158–68. doi:10.1152/physiolgenomics.90392.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Šarić A, Sobočanec S, Šafranko ŽM, Popović-Hadžija M, Aralica G, Korolija M, et al. Female headstart in resistance to hyperoxia-induced oxidative stress in mice. Acta Biochim Pol. 2014;61:801–7.

    PubMed  Google Scholar 

  20. Lingappan K, Jiang W, Wang L, Couroucli XI, Moorthy B. Sex-specific differences in hyperoxic lung injury in mice: role of cytochrome P450 (CYP)1A. Toxicology. 2015;331:14–23. doi:10.1016/j.tox.2015.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Redente EF, Jacobsen KM, Solomon JJ, Lara AR, Faubel S, Keith RC, et al. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2011;301:L510–8. doi:10.1152/ajplung.00122.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Babin AL, Cannet C, Gérard C, Saint-Mezard P, Page CP, Sparrer H, et al. Bleomycin-induced lung injury in mice investigated by MRI: model assessment for target analysis. Magn Reson Med. 2012;67:499–509. doi:10.1002/mrm.23009.

    Article  CAS  PubMed  Google Scholar 

  23. Gharaee-Kermani M, Hatano K, Nozaki Y, Phan SH. Gender-based differences in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2005;166:1593–606. doi:10.1016/S0002-9440(10)62470-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509:282–3.

    Article  PubMed  Google Scholar 

  25. Iskander KN, Craciun FL, Stepien DM, Duffy ER, Kim J, Moitra R, et al. Cecal ligation and puncture-induced murine sepsis does not cause lung injury. Crit Care Med. 2013;41:154–65. doi:10.1097/CCM.0b013e3182676322.

    Article  PubMed Central  Google Scholar 

  26. Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC. Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol. 2005;175:3369–76.

    Article  CAS  PubMed  Google Scholar 

  27. Hu G, Malik AB, Minshall RD. Toll-like receptor 4 mediates neutrophil sequestration and lung injury induced by endotoxin and hyperinflation. Crit Care Med. 2010;38:194–201. doi:10.1097/CCM.0b013e3181bc7c17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chun CD, Liles WC, Frevert CW, Glenny RW, Altemeier WA. Mechanical ventilation modulates Toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: a controlled animal study. BMC Pulm Med. 2010;10:57. doi:10.1186/1471-2466-10-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dhanireddy S, Altemeier WA, Matute-Bello G, O’Mahony DS, Glenny RW, Martin TR, et al. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia. Lab Invest. 2006;86:790–9. doi:10.1038/labinvest.3700440.

    Article  CAS  PubMed  Google Scholar 

  30. Gurkan OU, O’Donnell C, Brower R, Ruckdeschel E, Becker PM. Differential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2003;285:L710–8. doi:10.1152/ajplung.00044.2003.

    Article  CAS  PubMed  Google Scholar 

  31. Allen GB, Leclair T, Cloutier M, Thompson-Figueroa J, Bates JHT. The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1580–9. doi:10.1152/ajplung.00483.2006.

    Article  CAS  PubMed  Google Scholar 

  32. Makena PS, Luellen CL, Balazs L, Ghosh MC, Parthasarathi K, Waters CM, et al. Preexposure to hyperoxia causes increased lung injury and epithelial apoptosis in mice ventilated with high tidal volumes. Am J Physiol Lung Cell Mol Physiol. 2010;299:L711–9. doi:10.1152/ajplung.00072.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295:L379–99. doi:10.1152/ajplung.00010.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. D’Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF, et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest. 2009;119:2898–913. doi:10.1172/JCI36498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klaff LS, Gill SE, Wisse BE, Mittelsteadt K, Matute-Bello G, Chen P, et al. Lipopolysaccharide-induced lung injury is independent of serum vitamin d concentration. PLoS ONE. 2012;7:e49076. doi:10.1371/journal.pone.0049076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB. Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol. 2004;172:3377–81.

    Article  CAS  PubMed  Google Scholar 

  37. Tsai WC, Strieter RM, Zisman DA, Wilkowski JM, Bucknell KA, Chen GH, et al. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect Immun. 1997;65:1870–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Altemeier WA, Sinclair SE. Hyperoxia in the intensive care unit: why more is not always better. Current Opin Crit Care. 2007;13:73–8. doi:10.1097/MCC.0b013e32801162cb.

    Article  Google Scholar 

  39. Lozon TI, Eastman AJ, Matute-Bello G, Chen P, Hallstrand TS, Altemeier WA. PKR-dependent CHOP induction limits hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2011;300:L422–9. doi:10.1152/ajplung.00166.2010.

    Article  CAS  PubMed  Google Scholar 

  40. Umezawa H. Bleomycin and other antitumor antibiotics of high molecular weight. Antimicrob Agents Chemother. 1965;5:1079–85.

    CAS  PubMed  Google Scholar 

  41. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007;117:3786–99. doi:10.1172/JCI32285.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu J, Mora A, Shim H, Stecenko A, Brigham KL, Rojas M. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis. Am J Respir Cell Mol Biol. 2007;37:291–9. doi:10.1165/rcmb.2006-0187OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bundesmann MM, Wagner TE, Chow Y-H, Altemeier WA, Steinbach T, Schnapp LM. Role of urokinase plasminogen activator receptor-associated protein in mouse lung. Am J Respir Cell Mol Biol. 2012;46:233–9. doi:10.1165/rcmb.2010-0485OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Das S, MacDonald K, Chang H-YS, Mitzner W. A simple method of mouse lung intubation. J Vis Exp. 2013; e50318. doi:10.3791/50318.

  45. Cai Y, Kimura S. Noninvasive intratracheal intubation to study the pathology and physiology of mouse lung. J Vis Exp. 2013; e50601. doi:10.3791/50601.

  46. Thomas JL, Dumouchel J, Li J, Magat J, Balitzer D, Bigby TD. Endotracheal intubation in mice via direct laryngoscopy using an otoscope. J Vis Exp. 2014;. doi:10.3791/50269.

    Google Scholar 

  47. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–8. doi:10.1056/NEJM200005043421801.

  48. O’Mahony DS, Liles WC, Altemeier WA, Dhanireddy S, Frevert CW, Liggitt D, et al. Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction. Crit Care. 2006;10:R136. doi:10.1186/cc5050.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gharib SA, Liles WC, Matute-Bello G, Glenny RW, Martin TR, Altemeier WA. Computational identification of key biological modules and transcription factors in acute lung injury. Am J Respir Crit Care Med. 2006;173:653–8. doi:10.1164/rccm.200509-1473OC.

    Article  CAS  PubMed  Google Scholar 

  50. Gharib SA, Liles WC, Klaff LS, Altemeier WA. Noninjurious mechanical ventilation activates a proinflammatory transcriptional program in the lung. Physiol Genomics. 2009;37:239–48. doi:10.1152/physiolgenomics.00027.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bomsztyk K, Mar D, An D, Sharifian R, Mikula M, Gharib SA, et al. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care. 2015;19:225. doi:10.1186/s13054-015-0943-4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gharib SA, Mar D, Bomsztyk K, Denisenko O, Dhanireddy S, Liles WC, et al. System-wide mapping of activated circuitry in experimental systemic inflammatory response syndrome. Shock. 2016;45:148–56. doi:10.1097/SHK.0000000000000507.

    Article  CAS  PubMed  Google Scholar 

  53. Oeckler RA, Lee W-Y, Park M-G, Kofler O, Rasmussen DL, Lee H-B, et al. Determinants of plasma membrane wounding by deforming stress. Am J Physiol Lung Cell Mol Physiol. 2010;299:L826–33. doi:10.1152/ajplung.00217.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Plataki M, Lee YD, Rasmussen DL, Hubmayr RD. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs. Am J Respir Crit Care Med. 2011;184:939–47. doi:10.1164/rccm.201104-0647OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hsia CCW, Hyde DM, Ochs M, Weibel ER, ATS/ERS Joint Task Force on Quantitative Assessment of Lung Structure. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010. p. 394–418. doi:10.1164/rccm.200809-1522ST.

  56. Moitra J, Sammani S, Garcia JGN. Re-evaluation of Evans Blue dye as a marker of albumin clearance in murine models of acute lung injury. Transl Res. 2007;150:253–65. doi:10.1016/j.trsl.2007.03.013.

    Article  CAS  PubMed  Google Scholar 

  57. Bates JHT. Pulmonary mechanics: a system identification perspective. Conf Proc IEEE Eng Med Biol Soc. 2009;1:170–2. doi:10.1109/IEMBS.2009.5333302.

    Google Scholar 

  58. Foster WM, Walters DM, Longphre M, Macri K, Miller LM. Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol. 2001;90:1111–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Altemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Altemeier, W.A., Hung, C.F., Matute-Bello, G. (2017). Mouse Models of Acute Lung Injury. In: Schnapp, L., Feghali-Bostwick, C. (eds) Acute Lung Injury and Repair. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46527-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46527-2_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46525-8

  • Online ISBN: 978-3-319-46527-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics