Skip to main content

Bio-inspired Sustainability Assessment – A Conceptual Framework

  • Chapter
  • First Online:
Biomimetic Research for Architecture and Building Construction

Part of the book series: Biologically-Inspired Systems ((BISY,volume 8))

Abstract

Because of the tremendous challenges of the impacts caused by the globally growing economy, the targeted development of sustainable innovation is an inevitable social responsibility. Despite some advances, however, sustainability has not yet been integrated into product development on a broad scale. Although bio-inspired innovations seem to offer solutions, the transfer of sustainability through the bio-inspiration process is only conducted implicitly and the possible fulfilment of the ‘promise of bio-inspiration’ is only assessed retrospectively.

In view of this situation, a bio-inspired sustainability concept is defined by conflating sustainability and bio-inspiration and is made concrete by framing an integrated assessment approach. The concept links current sustainability assessment practice, exemplified by sustainability in construction and aspects of sustainability in biological systems. The basic assessment structure is derived from biological systems, which provide necessary functions through the efficient use of scarce resources. Its application covers the complete development process of bio-inspired innovations, providing feedback and thus decision support with a focus on sustainability. Hence, the implicit sustainability transfer of bio-inspiration is enhanced by targeted transfer and by a ‘commitment of bio-inspiration’ to create both sustainable and bio-inspired innovations.

As the assessment method itself is expected to be bio-inspired, it is constructed based on characteristics of biological systems such as effectiveness, adaptivity, multifunctionality and resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To improve readability, we use the umbrella terms ‘biologically inspired’, ‘bio-inspired’, ‘biological inspiration’ and ‘bio-inspiration’ for all innovations inspired by a biological role model that is not directly involved in the production. If the terms biomimetic or biomimetics are used, we should point out that, in these cases, a development according to the VDI definitions of biomimetics is achieved and a knowledge transfer of ‘inspiration’ and ‘functional principle’ has taken place (Speck et al. 2016).

References

  • Achinstein P (1977) Function statements. Philos Sci 44(3):341–367

    Article  Google Scholar 

  • Antony F, Grießhammer R, Speck T, Speck O (2014) Sustainability assessment of a lightweight biomimetic ceiling structure. Bioinspir Biomim 9(1):16013. doi:10.1088/1748-3182/9/1/016013

    Article  Google Scholar 

  • Atkinson G, Dietz S, Neumayer E (2007) Handbook of sustainable development. Edward Elgar, Cheltenham/Northampton

    Book  Google Scholar 

  • Bloesch J, von Hauff M, Mainzer K et al (2015) Sustainable development integrated in the concept of resilence. Problemy Ekorozwoju – Probl Sustain Dev 10(1):7–14

    Google Scholar 

  • Blok K, Huijbregts M, Roes L et al (2013) A novel methodology for the sustainability impact assessment of new technologies. http://www.prosuite.org/c/document_library/get_file?uuid=bdbb04e9-1a34-434b-85a8-44bafb28155b&groupId=10136. Accessed 1 Jun 2016

  • Braungart M, McDonough W (2014) Cradle to Cradle: Einfach intelligent produzieren, Ungekürzte Taschenbuchausg. Piper, München, Zürich

    Google Scholar 

  • Carlowitz HCV (1713) Sylvicultura oeconomica oder haußwirthliche Nachricht und Naturgemäßige Anweisung zur Wilden Baum-Zucht. Johan Friedrich Braun, Leipzig

    Google Scholar 

  • Crul M, Diehl J (2007) Design for sustainability: a practical approach for developing economies. http://www.d4s-de.org/manual/d4stotalmanual.pdf. Accessed 1 Jun 2016

  • Cruzen PJ (2002) Geology of mankind: the Anthropocene. Nature 415:23

    Article  Google Scholar 

  • Daly HE (1991) Steady-state economics, 2nd edn, with new essays. Island Press, Washington, DC

    Google Scholar 

  • Die Partner des Begleitprojekts MaRKT (2015) Leitfaden zur Bewertung von Ressourceneffizienz in Projekten der BMBF-Fördermaßnahme MatRessource. http://www.matressource.de/fileadmin/redakteure/pdf/Leitfaden_Bewertung_von_Ressourceneffizienz_V4.pdf. Accessed 1 Jun 2016

  • Dietz S, Neumayer E (2007) Weak and strong sustainability in the SEEA: concepts and measurement. Ecol Econ 61(4):617–626. doi:10.1016/j.ecolecon.2006.09.007

    Article  Google Scholar 

  • Eberl S (2013) OPEN HOUSE: Assessment guideline. http://www.openhouse-fp7.eu/assets/files/OPEN_HOUSE_AG1.2.pdf. Accessed 1 Jun 2016

  • Ebert T, Eßig N, Hauser G (2010) Zertifizierungssysteme für Gebäude: Nachhaltigkeit bewerten; internationaler Systemvergleich; Zertifizierung und Ökonomie. Inst. f. internat. Architektur-Dokumentation, München

    Google Scholar 

  • FAO (2014) The Sustainability Assessment of Food and Agriculture systems (SAFA) guidelines: version 3.0. Accessed 1 Jun 2016

    Google Scholar 

  • Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards life cycle sustainability assessment. Sustainability 2(10):3309–3322. doi:10.3390/su2103309

    Article  Google Scholar 

  • FitzPatrick W (2016) Morality and evolutionary biology. The Stanford encyclopedia of philosophy, Spring 2016 Edition

    Google Scholar 

  • Grießhammer R, Buchert M, Gensch C-O et al (2007) PROSA – Product Sustainability Assessment. http://www.prosa.org/fileadmin/user_upload/pdf/PROSA-gesamt_Finalversion_0407_red.pdf. Accessed 1 Jun 2016

  • Grober U (2013) Die Entdeckung der Nachhaltigkeit: Kulturgeschichte eines Begriffs. Kunstmann, München

    Google Scholar 

  • Hawken P, Lovins AB, Lovins LH (1999) Natural capitalism: creating the next industrial revolution, 1st edn. Little, Brown and Co., Boston

    Google Scholar 

  • Jung J, von der Assen N, Bardow A (2014) Sensitivity coefficient-based uncertainty analysis for multi-functionality in LCA. Int J Life Cycle Assess 19(3):661–676. doi:10.1007/s11367-013-0655-4

    Article  Google Scholar 

  • Klinglmair M, Sala S, Brandão M (2014) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19(3):580–592. doi:10.1007/s11367-013-0650-9

    Article  Google Scholar 

  • Klöpffer W, Grahl B (2009) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. Wiley, Weinheim

    Book  Google Scholar 

  • Kosmol J, Kanthak J, Herrman F et al (2012) Glossar zum Ressourcenschutz. https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4242.pdf. Accessed 1 Jun 2016

  • Leach M, Stirling A, Scoones I (2010) Dynamic sustainabilities: technology, environment, social justice, Pathways to Sustainability Series. Earthscan, London

    Google Scholar 

  • Lienhard J, Schleicher S, Poppinga S et al (2011) Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir Biomim 6(4):45001. doi:10.1088/1748-3182/6/4/045001

    Article  CAS  Google Scholar 

  • Meadows DL, Randers J, Behrens III., William W (1972) The limits to growth: a report for the club of Rome’s project on the predicament of mankind, 1. print. Universe Books, New York

    Google Scholar 

  • Moore FC (2011) Toppling the tripod: sustainable development, constructive ambiguity, and the environmental challenge. Consilience: J Sustain Dev 1(5):141–150

    Google Scholar 

  • Moro JL (2009) Baukonstruktion: vom Prinzip zum Detail. In: Grundlagen, vol 1. Springer, Berlin, Heidelberg

    Google Scholar 

  • Pedersen Zari M (2014) Ecosystem processes for biomimetic architectural and urban design. Archit Sci Rev 58(2):106–119. doi:10.1080/00038628.2014.968086

    Article  Google Scholar 

  • Pesqueux Y (2009) Sustainable development: a vague and ambiguous “theory”. Soc Bus Rev 4(3):231–245. doi:10.1108/17465680910994227

    Article  Google Scholar 

  • Purdey SJ (2012) Economic growth, the environment and international relations: the growth paradigm, vol 17, 2nd edn. Routledge, London/New York

    Google Scholar 

  • Reap J (2009) Holistic biomimicry: a biologically inspired approach to environmentally benign engineering. Dissertation, Georgia Institute of Technology

    Google Scholar 

  • Robinson J (2004) Squaring the circle? Some thoughts on the idea of sustainable development. Ecol Econ 48(4):369–384. doi:10.1016/j.ecolecon.2003.10.017

    Article  Google Scholar 

  • Schmidt-Bleek F, Bierter W (1998) Das MIPS-Konzept: Weniger Naturverbrauch--mehr Lebensqualität durch Faktor 10. Droemer, München

    Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2015) Abiotic resource depletion in LCA—background and update of the anthropogenic stock extended abiotic depletion potential (AADP) model. Int J Life Cycle Assess 20(5):709–721. doi:10.1007/s11367-015-0864-0

    Article  CAS  Google Scholar 

  • Speck O, Speck D, Horn R et al (2016) Biomimetic – bio-inspired – biomorph – sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinsp. Biomim. (in press)

    Google Scholar 

  • UNEP/SETAC Life Cycle Initiative (2011) Towards a life cycle sustainability assessment: making informed choices on products. http://www.unep.org/pdf/UNEP_LifecycleInit_Dec_FINAL.pdf. Accessed 1 Jun 2016

  • United Nations (2015) Transforming our world: the 2030 agenda for sustainable development: A/RES/70/1

    Google Scholar 

  • Valero A, Valero A (2010) Physical geonomics: combining the exergy and Hubbert peak analysis for predicting mineral resources depletion. Resour Conserv Recycl 54(12):1074–1083. doi:10.1016/j.resconrec.2010.02.010

    Article  Google Scholar 

  • Vester F (2011) Die Kunst vernetzt zu denken: Ideen und Werkzeuge für einen neuen Umgang mit Komplexität; ein Bericht an den Club of Rome, 8th edn. Dt. Taschenbuch-Verl, München

    Google Scholar 

  • Vincent JF (2002) Survival of the cheapest. Mater Today 5(12):28–41. doi:10.1016/S1369-7021(02)01237-3

    Article  Google Scholar 

  • von Gleich A, Pade C, Petschow U, Pissarskoi E (2007) Bionik: Aktuelle Trends und zukünftige Potenziale. Institut für ökologische Wirtschaftsforschung, Berlin

    Google Scholar 

  • von Weizsäcker, Ernst Ulrich, Desha C (2010) Faktor Fünf: Die Formel für nachhaltiges Wachstum. Droemer, München

    Google Scholar 

  • Walsh DM (1996) Fitness and function. Br J Philos Sci 47:553–574

    Article  Google Scholar 

  • Wittstock B (2012) Methode zur Analyse und Beurteilung des Einflusses von Bauprodukteigenschaften auf die Nachhaltigkeitsbewertung im Rahmen der Zertifizierung von Gebäuden. Dissertation, Universität Stuttgart

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 ‘Biological Design and Integrative Structures’/project C01 ‘The biomimetic promise: natural solutions as concept generators for sustainable technology development in the construction sector’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horn, R., Gantner, J., Widmer, L., Sedlbauer, K.P., Speck, O. (2016). Bio-inspired Sustainability Assessment – A Conceptual Framework. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_18

Download citation

Publish with us

Policies and ethics