Skip to main content

Comparative In Situ Microscopic Observation of Cellulose and Chitin in Hydrothermal Conditions

  • Chapter
  • First Online:
Extreme Biomimetics
  • 862 Accesses

Abstract

Cellulose is the most abundant biopolymer on earth, while chitin is the most abundant biopolymer in the marine environment. This chapter reviews stability of these polysaccharides in water at high temperatures and high pressures up to the supercritical state of water (T c = 374 °C, P c = 22.1 MPa), which was studied by in situ optical microscopy. The results have direct ramifications in considering/developing hydrothermal biomass conversion, hydrothermal synthesis of inorganic–organic composites, and fossilization of soft-bodied organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (2004) NIST Scientific and Technical Databases: NIST/ASME STEAM Properties Database.

References

  • Adschiri T, Hirose S, Malaluan R, Arai K (1993) Noncatalytic conversion of cellulose in supercritical and subcritical water. J Chem Eng Jpn 26:676–680

    Article  Google Scholar 

  • Atwell WA, Hood LF, Lineback DR et al (1988) The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33:306–311

    Google Scholar 

  • Baas M, Briggs DEG, Van Heemst JDH et al (1995) Selective preservation of chitin during the decay of shrimp. Geochim Cosmochim Acta 59:945–951

    Article  Google Scholar 

  • Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Planet Sci 31:275–301

    Article  Google Scholar 

  • Brovchenko I, Geiger A, Oleinikova A (2004) Water in nanopores. I. Coexistence curves from Gibbs ensemble Monte Carlo simulations. J Chem Phys 120:1958–1972

    Article  Google Scholar 

  • Butterfield NJ, Balthasar U, Wilson LA (2007) Fossil diagenesis in the Burgess Shale. Palaeontology 50:537–543

    Article  Google Scholar 

  • Deguchi S, Ifuku N (2013) Bottom-up formation of dodecane-in-water nanoemulsions from hydrothermal homogeneous solutions. Angew Chem Int Ed 52:6409–6412

    Article  Google Scholar 

  • Deguchi S, Tsujii K (2002) Flow cell for in situ optical microscopy in water at high temperatures and pressures up to supercritical state. Rev Sci Instrum 73:3938–3941

    Article  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2006a) Cooking cellulose in hot and compressed water. Chem Commun 2006:3293–3295

    Article  Google Scholar 

  • Deguchi S, Ghosh SK, Alargova RG, Tsujii K (2006b) Viscosity measurements of water at high temperatures and pressures using dynamic light scattering. J Phys Chem B 110:18358–18362

    Article  Google Scholar 

  • Deguchi S, Tsudome M, Shen Y et al (2007) Preparation and characterisation of nanofibrous cellulose plate as a new solid support for microbial culture. Soft Matter 3:1170–1175

    Article  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2008a) Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–196

    Article  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2008b) Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions. Green Chem 10:623–626

    Article  Google Scholar 

  • Deguchi S, Tsujii K, Horikoshi K (2015) In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions. Sci Rep 5:11907

    Article  Google Scholar 

  • Ehrlich H, Rigby JK, Botting JP et al (2013a) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497

    Article  Google Scholar 

  • Ehrlich H, Simon P, Motylenko M et al (2013b) Extreme biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J Mater Chem B 1:5092–5099

    Article  Google Scholar 

  • Igarashi K, Uchihashi T, Uchiyama T et al (2014) Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nat Commun 5:3975

    Article  Google Scholar 

  • Jang MK, Kong BG, Jeong YI et al (2004) Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci A Polym Chem 42:3423–3432

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  • Ko W-C, Liu W-C, Tsang Y-T, Hsieh C-W (2007) Kinetics of winter mushrooms (Flammulina velutipes) microstructure and quality changes during thermal processing. J Food Eng 81:587–598

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms, 8th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Mukai S, Deguchi S, Tsujii K (2006) A high-temperature and—pressure microscope cell to observe colloidal behaviors in subcritical and supercritical water: Brownian motion of colloids near a wall. Colloids Surf A 282–283:483–488

    Article  Google Scholar 

  • Mukai S, Koyama T, Tsujii K, Deguchi S (2014) Anomalous long-range repulsion between silica surfaces induced by density inhomogeneities in supercritical ethanol. Soft Matter 10:6645–6650

    Article  Google Scholar 

  • Muzzarelli RAA (2011) Chitin nanostructures in living organisms. In: Gupta NS (ed) Chitin. Springer, Dordrecht, pp 1–34

    Chapter  Google Scholar 

  • Park BK, Kim M-M (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11:5152–5164

    Article  Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  Google Scholar 

  • Sakanishi K, Ikeyama N, Sakaki T et al (1999) Comparison of the hydrothermal decomposition reactivities of chitin and cellulose. Ind Eng Chem Res 38:2177–2181

    Article  Google Scholar 

  • Sasaki M, Kabyemela B, Malaluan R et al (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13:261–268

    Article  Google Scholar 

  • Sasaki M, Fang Z, Fukushima Y et al (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890

    Article  Google Scholar 

  • Shaw RW, Brill TB, Clifford AA, Franck EU (1991) Supercritical water. Chem Eng News 69:26–39

    Google Scholar 

  • Souza CP, Almeida BC, Colwell RR, Rivera ING (2011) The importance of chitin in the marine environment. Mar Biotechnol 13:823–830

    Article  Google Scholar 

  • Stoychev G, Zakharchenko S, Turcaud S et al (2012) Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 6:3925–3934

    Article  Google Scholar 

  • Wysokowski M, Behm T, Born R et al (2013a) Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater Sci Eng C 33:3935–3941

    Article  Google Scholar 

  • Wysokowski M, Motylenko M, Stöcker H et al (2013b) An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J Mater Chem B 1:6469–6476

    Article  Google Scholar 

  • Wysokowski M, Zatoń M, Bazhenov VV et al (2014a) Identification of chitin in 200-million-year-old gastropod egg capsules. Paleobiology 40:529–540

    Article  Google Scholar 

  • Wysokowski M, Motylenko M, Walter J et al (2014b) Synthesis of nanostructured chitin–hematite composites under extreme biomimetic conditions. RSC Adv 4:61743–61752

    Article  Google Scholar 

  • Wysokowski M, Petrenko I, Stelling A et al (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7:235–265

    Article  Google Scholar 

  • Zeronian SH (1985) Intercrystalline swelling of cellulose. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood, Chichester, pp 139–158

    Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Deguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deguchi, S. (2017). Comparative In Situ Microscopic Observation of Cellulose and Chitin in Hydrothermal Conditions. In: Ehrlich, H. (eds) Extreme Biomimetics. Springer, Cham. https://doi.org/10.1007/978-3-319-45340-8_5

Download citation

Publish with us

Policies and ethics