Skip to main content

Color Constancy and Contextual Effects on Color Appearance

  • Chapter
  • First Online:
Book cover Human Color Vision

Abstract

Color is a useful cue to object properties such as object identity and state (e.g., edibility), and color information supports important communicative functions. Although the perceived color of objects is related to their physical surface properties, this relationship is not straightforward. The ambiguity in perceived color arises because the light entering the eyes contains information about both surface reflectance and prevailing illumination. The challenge of color constancy is to estimate surface reflectance from this mixed signal. In addition to illumination, the spatial context of an object may also affect its color appearance. In this chapter, we discuss how viewing context affects color percepts. We highlight some important results from previous research, and move on to discuss what could help us make further progress in the field. Some promising avenues for future research include using individual differences to help in theory development, and integrating more naturalistic scenes and tasks along with model comparison into color constancy and color appearance research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Colorimetric specification of a light stimulus is often made in terms of tristimulus values, which are the intensity values of three reference lights needed to match the test light. Different systems, such as the [R,G,B] and [X,Y,Z] of the Commission Internationale de L’éclairage (CIE) are based on different choices of the three reference lights, but they are essentially equivalent: different tristimulus values are related to each other by a linear transform. The tristimulus vector of a light is often just referred to as its “color,” but this is potentially misleading, since the perceived color depends on context as well (see [89] for a good introduction to color measurement)

  2. 2.

    So called because they cannot be divided further into component hues; see Chap. 5.

  3. 3.

    Perception experiments typically involve long sessions with a large number of stimuli presented to each observer, which poses a challenge to recruiting large samples of naive observers.

References

  1. Osorio D, Vorobyev M. A review of the evolution of animal colour vision and visual communication signals. Vision Res. 2008;48(20):2042–51.

    Article  CAS  PubMed  Google Scholar 

  2. Judd DB. Fundamental studies of color vision from 1860 to 1960. Proc Natl Acad Sci U S A. 1966;55(6):1313–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. König A, Dieterici C. Die Grundempfindungen und ihre Intensitätsvertheilung im Spectrum. Juli: Sitzungsberichte der Akademie der Wissenschaften in Berlin; 1886. p. 805–29.

    Google Scholar 

  4. Schnapf JL, Kraft TW, Baylor DA. Spectral sensitivity of human cone photoreceptors. Nature. 1987;325(6103):439–41.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs GH, Williams GA, Cahill H, Nathans J. Emergence of novel color vision in mice engineered to express a human cone photopigment. Science. 2007;315(5819):1723–5.

    Article  CAS  PubMed  Google Scholar 

  6. Mancuso K, Hauswirth WW, Li Q, Connor TB, Kuchenbecker JA, Mauck MC, et al. Gene therapy for red-green colour blindness in adult primates. Nature. 2009;461(7265):784–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brainard DH, Radonjić A. Color constancy. N Vis Neurosci. 2014;1:545–56.

    Google Scholar 

  8. Foster DH. Color constancy. Vision Res. 2011;51(7):674–700.

    Article  PubMed  Google Scholar 

  9. Shevell SK, Kingdom FAA. Color in complex scenes. Annu Rev Psychol. 2008;59:143–66.

    Article  PubMed  Google Scholar 

  10. Smithson HE. Sensory, computational and cognitive components of human colour constancy. Philos Trans R Soc Lond B Biol Sci. 2005;360(1458):1329–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmer SE. Vision science: photons to phenomenology. Cambridge, MA: Bradford Books, MIT Press; 1999.

    Google Scholar 

  12. von Helmholz H. Handbuch der Physiologischen Optik. Leipzig: Leopold Voss; 1867.

    Google Scholar 

  13. Adelson EH, Pentland AP. The perception of shading and reflectance. In: Knill DC, Richards W, editors. Perception as Bayesian inference, vol. 1. New York: Cambridge University Press; 1996. p. 409–23.

    Chapter  Google Scholar 

  14. Barrow HG, Tenenbaum JM. Recovering intrinsic scene characteristics from images. Computer Vision Systems; 1978. p. 3–26.

    Google Scholar 

  15. Brainard DH, Longère P, Delahunt PB, Freeman WT, Kraft JM, Xiao B. Bayesian model of human color constancy. J Vis. 2006;6(11):1267–81.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Olkkonen M, Saarela TP, Allred SR. Perception-memory interactions reveal the computational strategy of reflectance perception. J Vis. 2016;16:38.

    Article  PubMed  Google Scholar 

  17. Gilchrist AL, Kossyfidis C, Bonato F, Agostini T, Cataliotti J, Xiaojun L, et al. An anchoring theory of lightness perception. Psychol Rev. 1999;106:795–834.

    Article  CAS  PubMed  Google Scholar 

  18. Maloney LT. Illuminant estimation as cue combination. J Vis. 2002;2(6):493–504.

    Article  PubMed  Google Scholar 

  19. Zaidi Q. Identification of illuminant and object colors: heuristic-based algorithms. J Opt Soc Am A. 1998;15(7):1767–76.

    Article  CAS  Google Scholar 

  20. Buchsbaum G. A spatial processor model for object color perception. J Franklin Inst. 1980;310:1–26.

    Article  Google Scholar 

  21. Hurlbert AC, Poggio TA. Synthesizing a color algorithm from examples. Science. 1988;239(4839):482–5.

    Article  CAS  PubMed  Google Scholar 

  22. Land EH. Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc Natl Acad Sci U S A. 1983;80(16):5163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Land EH, McCann JJ. Lightness and retinex theory. J Opt Soc Am. 1971;61(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  24. D’Zmura M, Lennie P. Mechanisms of color constancy. J Opt Soc Am A Opt Image Sci. 1986;3(10):1662–72.

    Article  Google Scholar 

  25. Maloney LT, Wandell BA. Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am A. 1986;3(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  26. Lee HC. Method for computing the scene-illuminant chromaticity from specular highlights. J Opt Soc Am A. 1986;3(10):1694–9.

    Article  CAS  PubMed  Google Scholar 

  27. Funt BV, Drew M, Ho J. Color constancy from mutual reflection. Int J Comput Vis. 1991;6:5–24.

    Article  Google Scholar 

  28. Kraft JM, Brainard DH. Mechanisms of color constancy under nearly natural viewing. Proc Natl Acad Sci U S A. 1999;96(1):307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyaci H, Doerschner K, Maloney LT. Cues to an equivalent lighting model. J Vis. 2006;6(6):106–18.

    PubMed  Google Scholar 

  30. Kitazaki M, Kobiki H, Maloney LT. Effect of pictorial depth cues, binocular disparity cues and motion parallax depth cues on lightness perception in three-dimensional virtual scenes. PLoS One. 2008;3(9):e3177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Snyder JL, Doerschner K, Maloney LT. Illumination estimation in three-dimensional scenes with and without specular cues. J Vis. 2005;5(10):863–77.

    Article  PubMed  Google Scholar 

  32. Radonjić A, Cottaris NP, Brainard DH. Color constancy supports cross-illumination color selection. J Vis. 2015;15:1–19.

    Google Scholar 

  33. Brown RO, MacLeod DI. Color appearance depends on the variance of surround colors. Curr Biol. 1997;7(11):844–9.

    Article  CAS  PubMed  Google Scholar 

  34. Arend LE, Reeves A. Simultaneous color constancy. J Opt Soc Am A. 1986;3(10):1743–51.

    Article  CAS  PubMed  Google Scholar 

  35. Arend LE, Reeves A, Schirillo J, Goldstein R. Simultaneous color constancy: paper with diverse Munsell values. J Opt Soc Am A. 1991;8(4):661–72.

    Article  PubMed  Google Scholar 

  36. Helson BYH. Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination. J Exp Psychol. 1938;23:439–76.

    Article  Google Scholar 

  37. Blakeslee B, McCourt ME. A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vision Res. 1999;39(26):4361–77.

    Article  CAS  PubMed  Google Scholar 

  38. Rudd ME. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences. Front Hum Neurosci. 2014;8:1–14.

    Article  Google Scholar 

  39. Hering E. Grundzüge der Lehre vom Lichtsinn. Berlin: Springer; 1920.

    Book  Google Scholar 

  40. Gelb A. Die “Farbenkonstanz” der Sehdinge. In: Bethe A, von Bergman G, Embden G, Ellinger A, editors. Handbuch der normalen und pathologischen Physiologie. Berlin: Springer; 1929. p. 594–687.

    Chapter  Google Scholar 

  41. Kingdom FAA. Simultaneous contrast: the legacies of Hering and Helmholtz. Perception. 1997;26(6):673–7.

    Article  CAS  PubMed  Google Scholar 

  42. Lotto RB, Purves D. An empirical explanation of color contrast. Proc Natl Acad Sci U S A. 2000;97(23):12834–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hurlbert AC, Wolf K. Color contrast: a contributory mechanism to color constancy. Prog Brain Res. 2004;144:147–60.

    PubMed  Google Scholar 

  44. Jameson D, Hurvich LM. Essay concerning color constancy. Annu Rev Psychol. 1989;40:1–22.

    Article  CAS  PubMed  Google Scholar 

  45. Wallach H. Brightness constancy and the nature of achromatic colors. J Exp Psychol. 1948;38(3):310–24.

    Article  CAS  PubMed  Google Scholar 

  46. Walraven J. Discounting the background: the missing link in the explanation of chromatic induction. Vision Res. 1976;16(3):289–95.

    Article  CAS  PubMed  Google Scholar 

  47. Whittle P. Contrast colours. In: Mausfeld M, Heyer D, editors. Color perception: mind and the physical world. Oxford: Oxford University Press; 2003. p. 115–38.

    Chapter  Google Scholar 

  48. Anderson BL. The perceptual representation of transparency, lightness, and gloss. In: Wagemans J, editor. Oxford handbook of perceptual organization. Oxford: Oxford University Press; 2015.

    Google Scholar 

  49. Rizzi A, McCann J. Simultaneous contrast and intraocular glare: opposing image dependent mechanisms in appearance. In Association Internationale de la Couleur (AIC). Interim Meeting in Stockholm June 15–18; 2008.

    Google Scholar 

  50. Ekroll V, Faul F. Transparency perception: the key to understanding simultaneous color contrast. J Opt Soc Am A Opt Image Sci Vis. 2013;30(3):342–52.

    Article  PubMed  Google Scholar 

  51. Ekroll V, Faul F, Niederée R. The peculiar nature of simultaneous colour contrast in uniform surrounds. Vision Res. 2004;44(15):1765–86.

    Article  PubMed  Google Scholar 

  52. Arend LE, Buehler JN, Lockhead GR. Difference information in brightness perception. Percept Psychophys. 1971;9(3):367–70.

    Article  Google Scholar 

  53. Whittle P. Contrast brightness and ordinary seeing. In: Gilchrist AL, editor. Lightness, brightness, and transparency. Hillsdale, NJ: Erlbaum; 1994. p. 111–58.

    Google Scholar 

  54. Whittle P. The psychophysics of contrast brightness. In: Gilchrist AL, editor. Lightness, brightness, and transparency. Hillsdale, NJ: Erlbaum; 1994. p. 35–110.

    Google Scholar 

  55. Whittle P, Challands PD. The effect of background luminance on the brightness of flashes. Vision Res. 1969;9(9):1095–110.

    Article  CAS  PubMed  Google Scholar 

  56. Gilchrist AL. Introduction: absolute versus relative theories of lightness perception. In: Gilchrist AL, editor. Lightness, brightness, and transparency. Hillsdale, NJ: Erlbaum; 1994. p. 1–34.

    Google Scholar 

  57. Gilchrist AL. Lightness contrast and failures of constancy: a common explanation. Percept Psychophys. 1988;43(5):415–24.

    Article  CAS  PubMed  Google Scholar 

  58. Koffka K. Principles of gestalt psychology. Trench: Kegan Paul; 1936.

    Google Scholar 

  59. Allred SR, Olkkonen M. The effect of background and illumination on color identification of real, 3D objects. Front Psychol. 2013;4:1–14.

    Article  Google Scholar 

  60. Evans RM. The perception of color. New York: Wiley; 1974.

    Google Scholar 

  61. Schmid AC, Anderson BL. Do surface reflectance properties and 3-D mesostructure influence the perception of lightness? J Vis. 2014;14:1–24.

    Article  Google Scholar 

  62. Mausfeld R. The perception of material qualities and the internal semantics of the perceptual system. In: Albertazzi L, van Tonder GJ, Vishwanath D, editors. Perception beyond inference. The information content of visual processes. Cambridge, MA: MIT Press; 2010. p. 159–200.

    Google Scholar 

  63. Vishwanath D. Coplanar reflectance change and the ontology of surface perception. In: Albertazzi L, editor. Visual thought: the depictive space of perception, advances in consciousness research. Amsterdam: John Benjamins Publishing Company; 2006. p. 35–70.

    Chapter  Google Scholar 

  64. Adelson EH. Perceptual organization and the judgment of brightness. Science. 1993;262(5142):2042–4.

    Article  CAS  PubMed  Google Scholar 

  65. Adelson EH. On seeing stuff: the perception of materials by humans and machines. Proc SPIE. 2001;4299:1–12.

    Article  Google Scholar 

  66. Anderson BL. A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions. Perception. 1997;26(4):419–53.

    Article  CAS  PubMed  Google Scholar 

  67. Anderson BL, Winawer J. Image segmentation and lightness perception. Nature. 2005;434:79–83.

    Article  CAS  PubMed  Google Scholar 

  68. Brainard DH, Maloney LT. Perception of color and material properties in complex scenes. J Vis. 2004;4(9):ii–v.

    Article  PubMed  Google Scholar 

  69. Fleming RW, Nishida S, Gegenfurtner KR. Perception of material properties. Vis Res. 2015;115:157–302.

    Article  PubMed  Google Scholar 

  70. Gilchrist AL. Perceived lightness depends on perceived spatial arrangement. Science. 1977;195(4274):185–7.

    Article  CAS  PubMed  Google Scholar 

  71. Mausfeld R. ‘Colour’ as part of the format of different perceptual primitives: the dual coding of colour. In: Mausfeld R, Heyer D, editors. Colour perception: mind and the physical world. Oxford: Oxford University Press; 2003. p. 381–429.

    Chapter  Google Scholar 

  72. Olkkonen M, Hansen T, Gegenfurtner KR. Color appearance of familiar objects: effects of object shape, texture, and illumination changes. J Vis. 2008;8(5):13.1–16.

    Article  Google Scholar 

  73. Smithson HE. Perceptual organization of colour. In: Wagemans J, editor. Oxford handbook of perceptual organization. Oxford: Oxford University Press; 2015.

    Google Scholar 

  74. Werner A. The influence of depth segmentation on colour constancy. Perception. 2006;35(9):1171–84.

    Article  PubMed  Google Scholar 

  75. Wollschläger D, Anderson BL. The role of layered scene representations in color appearance. Curr Biol. 2009;19(5):430–5.

    Article  PubMed  CAS  Google Scholar 

  76. Xiao B, Hurst B, MacIntyre L, Brainard DH. The color constancy of three-dimensional objects. J Vis. 2012;12(4):6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Blakeslee B, McCourt ME. Comments and responses to “Theoretical approaches to lightness and perception”. Perception. 2015;44(4):359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gilchrist A. Theoretical approaches to lightness and perception. Perception. 2015;44(4):339–58.

    Article  PubMed  Google Scholar 

  79. Katz D. Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung. Leipzig: Barth; 1911.

    Google Scholar 

  80. MacLeod D. New dimensions in color perception. Trends Cogn Sci. 2003;7(3):97–9.

    Article  PubMed  Google Scholar 

  81. Tokunaga R, Logvinenko AD. Material and lighting hues of object colour. Ophthalmic Physiol Opt. 2010;30(5):611–7.

    Article  PubMed  Google Scholar 

  82. Vladusich T. Gamut relativity: a new computational approach to brightness and lightness perception. J Vis. 2013;13(1):14.

    Article  PubMed  Google Scholar 

  83. Foster DH. Does colour constancy exist? Trends Cogn Sci. 2003;7(10):439–43.

    Article  PubMed  Google Scholar 

  84. Bosten JM, Mollon JD. Kirschmann’s fourth law. Vision Res. 2012;53(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  85. Brainard DH, Brunt WA, Speigle JM. Color constancy in the nearly natural image. I. Asymmetric matches. J Opt Soc Am A. 1997;14:2091–110.

    Article  CAS  Google Scholar 

  86. Brainard DH, Maloney LT. Surface color perception and equivalent illumination models. J Vis. 2011;11(5):1–18.

    Article  PubMed  Google Scholar 

  87. Ekroll V, Faul F. New laws of simultaneous contrast? Seeing Perceiving. 2012;25(2):107–41.

    Article  PubMed  Google Scholar 

  88. Mausfeld R, Niederée R. An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli. Perception. 1993;22(1975):427–62.

    Article  CAS  PubMed  Google Scholar 

  89. Koenderink JJ. Color for the sciences. Cambridge: MIT Press; 2010.

    Google Scholar 

  90. Hillis JM, Brainard DH. Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds. J Opt Soc Am A. 2005;22(10):2090–106.

    Article  Google Scholar 

  91. Hering E. Eine Methode zur Beobachtung contrastes. Pflügers Arch. 1890;47(1):236–42.

    Article  Google Scholar 

  92. Bramwell DI, Hurlbert AC. Measurements of colour constancy by using a forced-choice matching technique. Perception. 1996;25(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  93. Brainard DH. Color constancy in the nearly natural image II. Achromatic loci. J Opt Soc Am A. 1998;17:307–25.

    Article  Google Scholar 

  94. Helson BYH. Adaptation-level as a basis for a quantitative theory of frames of reference. Psychol Rev. 1948;55(6):297–313.

    Article  CAS  PubMed  Google Scholar 

  95. Speigle JM, Brainard DH. Predicting color from gray: the relationship between achromatic adjustment and asymmetric matching. J Opt Soc Am A. 1999;16:2370–6.

    Article  CAS  Google Scholar 

  96. Ekroll V, Faul F. A simple model describes large individual differences in simultaneous colour contrast. Vision Res. 2009;49(18):2261–72.

    Article  PubMed  Google Scholar 

  97. Ekroll V, Faul F, Wendt G. The strengths of simultaneous colour contrast and the gamut expansion effect correlate across observers: evidence for a common mechanism. Vision Res. 2011;51(3):311–22.

    Article  PubMed  Google Scholar 

  98. Miyahara E, Smith VC, Pokorny J. The consequences of opponent rectification: the effect of surround size and luminance on color appearance. Vision Res. 2001;41(7):859–71.

    Article  CAS  PubMed  Google Scholar 

  99. Smith VC, Pokorny J. Color contrast under controlled chromatic adaptation reveals opponent rectification. Vision Res. 1996;36(19):3087–105.

    Article  CAS  PubMed  Google Scholar 

  100. Takasaki H. Lightness change of grays induced by change in reflectance of gray background. J Opt Soc Am. 1966;56(4):504–9.

    Article  CAS  PubMed  Google Scholar 

  101. Takasaki H. Chromatic changes induced by changes in chromaticity of background of constant lightness. J Opt Soc Am. 1967;57(1):93–6.

    Article  CAS  PubMed  Google Scholar 

  102. Arend LE. How much does illuminant color affect unattributed colors? J Opt Soc Am A Opt Image Sci Vis. 1993;10(10):2134–47.

    Article  CAS  PubMed  Google Scholar 

  103. Hurvich LM, Jameson D. An opponent-process theory of color vision. Psychol Rev. 1957;64(6 Pt 1):384–404.

    Article  PubMed  Google Scholar 

  104. Schultz S, Doerschner K, Maloney LT. Color constancy and hue scaling. J Vis. 2006;6(10):1102–16.

    Article  PubMed  Google Scholar 

  105. Giesel M, Hansen T, Gegenfurtner KR. The discrimination of chromatic textures. J Vis. 2009;9:1–28.

    Article  PubMed  Google Scholar 

  106. Krauskopf J, Gegenfurtner KR. Color discrimination and adaptation. Vision Res. 1992;32(11):2165+2175.

    Article  Google Scholar 

  107. Miyahara E, Smith VC, Pokorny J. How surrounds affect chromaticity discrimination. J Opt Soc Am A Opt Image Sci. 1993;10(4):545–53.

    Article  CAS  Google Scholar 

  108. Whittle P. Brightness, discriminability and the “crispening effect”. Vision Res. 1992;32(8):1493–507.

    Article  CAS  PubMed  Google Scholar 

  109. Kingdom FAA, Prins N. Psychophysics: a practical introduction. London: Academic; 2010.

    Google Scholar 

  110. Maloney LT, Yang JN. Maximum likelihood difference scaling. J Vis. 2003;3(8):573–85.

    Article  PubMed  Google Scholar 

  111. Abrams AB, Hillis JM, Brainard DH. The relation between color discrimination and color constancy: when is optimal adaptation task dependent? Neural Comput. 2007;19(10):2610–37.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Heinemann EG. The relation of apparent brightness to the threshold for differences in luminance. J Exp Psychol. 1961;61:389–99.

    Article  CAS  PubMed  Google Scholar 

  113. Niederée R. More than three dimensions: what continuity considerations can tell us about perceived color. In: Cohen J, Matthen M, editors. Color ontology and color science. Cambridge: MIT Press; 2010. p. 91–122.

    Chapter  Google Scholar 

  114. Ekroll V, Faul F. Basic characteristics of simultaneous color contrast revisited. Psychol Sci. 2012;23(10):1246–55.

    Article  PubMed  Google Scholar 

  115. Burgh P, Grindley GC. Size of test patch and simultaneous contrast. Q J Exp Psychol. 1962;14(2):89–93.

    Article  Google Scholar 

  116. Logvinenko AD, Maloney LT. The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching. Percept Psychophys. 2006;68(1):76–83.

    Article  PubMed  Google Scholar 

  117. Robilotto R, Zaidi Q. Limits of lightness identification for real objects under natural viewing conditions. J Vis. 2004;4:779–97.

    Article  PubMed  Google Scholar 

  118. Robilotto R, Zaidi Q. Lightness identification of patterned three-dimensional, real objects. J Vis. 2006;6(1):18–36.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zaidi Q, Bostic M. Color strategies for object identification. Vision Res. 2008;48(26):2673–81.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Radonjić A, Cottaris NP, Brainard DH. Color constancy in a naturalistic goal-directed task. J Vis. 2015;15(13):3.1–3.21.

    Article  Google Scholar 

  121. Hansen T, Walter S, Gegenfurtner KR. Effects of spatial and temporal context on color categories and color constancy. J Vis. 2007;7(4):2.1–2.15.

    Article  Google Scholar 

  122. Olkkonen M, Witzel C, Hansen T, Gegenfurtner KR. Categorical color constancy for real surfaces. J Vis. 2010;10(9):9.1–9.22.

    Google Scholar 

  123. Smithson H, Zaidi Q. Colour constancy in context: roles for local adaptation and levels of reference. J Vis. 2004;4(9):693–710.

    Article  PubMed  Google Scholar 

  124. Speigle JM, Brainard DH. Is color constancy task independent. In: The fourth color imaging conference: color science, systems and applications; 1996. p. 167–72.

    Google Scholar 

  125. Troost JM, de Weert CM. Naming versus matching in color constancy. Percept Psychophys. 1991;50(6):591–602.

    Article  CAS  PubMed  Google Scholar 

  126. Olkkonen M, Hansen T, Gegenfurtner KR. Categorical color constancy for simulated surfaces. J Vis. 2009;9(12):6.1–6.18.

    Article  Google Scholar 

  127. Jacobs GH, Gaylord HA. Effects of chromatic adaptation on color naming. Vision Res. 1967;7(7):645–53.

    Article  CAS  PubMed  Google Scholar 

  128. Uchikawa K, Yokoi K, Yamauchi Y. Categorical color constancy is more tolerant than apparent color constancy. J Vis. 2004;4(8):327.

    Article  Google Scholar 

  129. Norman LJ, Akins K, Heywood CA, Kentridge RW. Color constancy for an unseen surface. Curr Biol. 2014;24(23):2822–6.

    Article  CAS  PubMed  Google Scholar 

  130. Reeves AJ, Amano K, Foster DH. Color constancy: phenomenal or projective? Percept Psychophys. 2008;70(2):219–28.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Blackwell KT, Buchsbaum G. Quantitative studies of color constancy. J Opt Soc Am A Opt Image Sci. 1988;5(10):1772–80.

    Article  CAS  Google Scholar 

  132. Gerhard HE, Maloney LT. Detection of light transformations and concomitant changes in surface albedo. J Vis. 2010;10(9):1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Craven BJ, Foster DH. An operational approach to colour constancy. Vision Res. 1992;32(7):1359–66.

    Article  CAS  PubMed  Google Scholar 

  134. Foster DH, Nascimento SM, Amano K, Arend LE, Linnell KJ, Nieves JL, et al. Parallel detection of violations of color constancy. Proc Natl Acad Sci U S A. 2001;98(14):8151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pearce B, Crichton S, Mackiewicz M, Finlayson GD, Hurlbert A. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations. PLoS One. 2014;9(2):e87989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ekroll V, Faul F. Perceptual organization in colour perception: inverting the gamut expansion effect. i-Perception. 2013;4(5):328–32.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shevell SK, Wei J. Chromatic induction: border contrast or adaptation to surrounding light? Vision Res. 1998;38(11):1561–6.

    Article  CAS  PubMed  Google Scholar 

  138. Bäuml KH. Color appearance: effects of illuminant changes under different surface collections. J Opt Soc Am A Opt Image Sci Vis. 1994;11(2):531–42.

    Article  PubMed  Google Scholar 

  139. Jenness JW, Shevell SK. Color appearance with sparse chromatic context. Vision Res. 1995;35(6):797–805.

    Article  CAS  PubMed  Google Scholar 

  140. Linnell KJ, Foster DH. Scene articulation: dependence of illuminant estimates on number of surfaces. Perception. 2002;31(2):151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zaidi Q, Spehar B, DeBonet J. Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes. J Opt Soc Am A. 1997;14(10):2608–21.

    Article  CAS  Google Scholar 

  142. Zemach IK, Rudd ME. Effects of surround articulation on lightness depend on the spatial arrangement of the articulated region. J Opt Soc Am A Opt Image Sci Vis. 2007;24(7):1830–41.

    Article  PubMed  Google Scholar 

  143. Yang JN, Shevell SK. Stereo disparity improves color constancy. Vision Res. 2002;42(16):1979–89.

    Article  PubMed  Google Scholar 

  144. Yang JN, Maloney LT. Illuminant cues in surface color perception: tests of three candidate cues. Vision Res. 2001;41:2581–600.

    Article  CAS  PubMed  Google Scholar 

  145. Yang JN, Shevell SK. Surface color perception under two illuminants: the second illuminant reduces color constancy. J Vis. 2003;3(5):369–79.

    Article  PubMed  Google Scholar 

  146. Boyaci H, Maloney LT, Hersh S. The effect of perceived surface orientation on perceived surface albedo in binocularly viewed scenes. J Vis. 2003;3(8):541–53.

    Article  CAS  PubMed  Google Scholar 

  147. Doerschner K, Boyaci H, Maloney LT. Human observers compensate for secondary illumination originating in nearby chromatic surfaces. J Vis. 2004;4(9):92–105.

    PubMed  Google Scholar 

  148. Doerschner K, Boyaci H, Maloney LT. Estimating the glossiness transfer function induced by illumination change and testing its transitivity. J Vis. 2010;10(4):8.1–9.

    Article  Google Scholar 

  149. Fleming RW, Dror RO, Adelson EH. Real-world illumination and the perception of surface reflectance properties. J Vis. 2003;3(5):347–68.

    Article  PubMed  Google Scholar 

  150. Olkkonen M, Brainard DH. Perceived glossiness and lightness under real-world illumination. J Vis. 2010;10(9):5.1–5.19.

    Google Scholar 

  151. Olkkonen M, Brainard DH. Joint effects of illumination geometry and object shape in the perception of surface reflectance. i-Perception. 2011;2(9):1014–34.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Judd DB. Hue saturation and lightness of surface colors with chromatic illumination. J Opt Soc Am. 1940;30(1):2–32.

    Article  Google Scholar 

  153. Allred SR, Olkkonen M. The effect of memory and context changes on color matches to real objects. Atten Percept Psychophys. 2015;77(5):1608–24.

    Article  PubMed  PubMed Central  Google Scholar 

  154. de Almeida VMN, Nascimento SMC. Perception of illuminant colour changes across real scenes. Perception. 2009;38(8):1109–17.

    Article  PubMed  Google Scholar 

  155. Granzier JJM, Vergne R, Gegenfurtner KR. The effects of surface gloss and roughness on color constancy for real 3-D objects. J Vis. 2014;14:1–20.

    Google Scholar 

  156. Hedrich M, Ruppertsberg AI. Color constancy improves for real 3D objects. J Vis. 2009;9:1–16.

    Article  PubMed  Google Scholar 

  157. Ling Y, Hurlbert A. Role of color memory in successive color constancy. J Opt Soc Am A. 2008;25(6):1215–26.

    Article  Google Scholar 

  158. Radonjić A, Gilchrist AL. Depth effect on lightness revisited: the role of articulation, proximity and fields of illumination. i-Perception. 2013;4:437–55.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Agostini T, Bruno N. Lightness contrast in CRT and paper-and-illuminant displays. Percept Psychophys. 1996;58(2):250–8.

    Article  CAS  PubMed  Google Scholar 

  160. Brainard DH, Ishigami K. Factors influencing the appearance of CRT colors. In: Proceedings of the IS&T/SID 1995 Imaging Conference, Scottsdale, AZ. IS&T, Springfield, VA; 1995. p. 62–6.

    Google Scholar 

  161. Cronbach LJ. The two disciplines of scientific psychology. Am Psychol. 1957;12:671–84.

    Article  Google Scholar 

  162. De-Wit L, Wagemans J. Individual differences in local and global perceptual organization. In: Wagemans J, editor. Oxford handbook of perceptual organization. Oxford: Oxford University Press; 2015.

    Google Scholar 

  163. Kanai R, Rees G. The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci. 2011;12(4):231–42.

    Article  CAS  PubMed  Google Scholar 

  164. Wilmer JB. How to use individual differences to isolate functional organization, biology, and utility of visual functions; with illustrative proposals for stereopsis. Spat Vis. 2008;21(6):561–79.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Danziger K. Constructing the subject: historical origins of psychological research. Cambridge: Cambridge University Press; 1994.

    Google Scholar 

  166. Navarro DJ, Griffiths TL, Steyvers M, Lee MD. Modeling individual differences using Dirichlet processes. J Math Psychol. 2006;50(2):101–22.

    Article  Google Scholar 

  167. Allen EC, Beilock SL, Shevell SK. Working memory is related to perceptual processing: a case from color perception. J Exp Psychol Learn Mem Cogn. 2011;37(4):1014–21.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Allen EC, Beilock SL, Shevell SK. Individual differences in simultaneous color constancy are related to working memory. J Opt Soc Am A. 2012;29(2):A52–9.

    Article  Google Scholar 

  169. Ripamonti C, Bloj M, Greenwald S, Maloney SI, Brainard DH. Measurements of the effect of surface slant on perceived lightness. J Vis. 2004;4(9):7.

    Article  Google Scholar 

  170. Kraft JM, Maloney SI, Brainard DH. Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues. Perception. 2002;31(2):247–63.

    Article  PubMed  Google Scholar 

  171. Arend LE, Goldstein R. Simultaneous constancy, lightness, and brightness. J Opt Soc Am A. 1987;4(12):2281–5.

    Article  CAS  PubMed  Google Scholar 

  172. Arend LE, Spehar B. Lightness, brightness, and brightness contrast: 2. Reflectance variation. Percept Psychophys. 1993;54(4):457–68.

    Article  CAS  PubMed  Google Scholar 

  173. Bäuml KH. Simultaneous color constancy: how surface color perception varies with the illuminant. Vision Res. 1999;39(8):1531–50.

    Article  PubMed  Google Scholar 

  174. Burzlaff W. Methodologische Beträge zum Problem der Farbenkonstanz. Z Psychol. 1931;119:177–235.

    Google Scholar 

  175. Orne MT. Demand characteristics and the concept of quasi-controls 1. In: Rosenthal R, Rosnow RL, Kazdin AE, editors. Artifacts in {behavioral} {research}. Oxford: Oxford University Press; 2009. p. 1–33.

    Google Scholar 

  176. Cornelissen FW, Brenner E. Simultaneous colour constancy revisited: an analysis of viewing strategies. Vision Res. 1995;35(17):2431–48.

    Article  CAS  PubMed  Google Scholar 

  177. Granzier JJM, Toscani M, Gegenfurtner KR. Role of eye movements in chromatic induction. J Opt Soc Am A Opt Image Sci Vis. 2012;29(2):A353–65.

    Article  PubMed  Google Scholar 

  178. Festinger L, Coren S, Rivers G. The effect of attention on brightness contrast and assimilation. Am J Psychol. 1970;83(2):189–207.

    Article  CAS  PubMed  Google Scholar 

  179. Tse PU, Reavis EA, Kohler PJ, Caplovitz GP, Wheatley T. How attention can alter appearances. In: Albertazzi L, editor. Handbook of experimental phenomenology: visual perception of shape, space and appearance. New York: Wiley; 2013. p. 291–315.

    Chapter  Google Scholar 

  180. Hess RF, Wang G, Cooperstock JR. Stereo vision : the haves and have-nots. i-Perception. 2015;6(3):1–5.

    Google Scholar 

  181. Brainard DHH, Hurlbert ACC. Colour vision: understanding #TheDress. Curr Biol. 2015;25(13):R551–4.

    Article  CAS  PubMed  Google Scholar 

  182. Gegenfurtner KR, Bloj M, Toscani M. The many colours of ‘the dress’. Curr Biol. 2015;25:R1–2.

    Article  CAS  Google Scholar 

  183. Gilchrist A. Perception and the social psychology of ‘The Dress’. Perception. 2015;44(3):229–31.

    Article  PubMed  Google Scholar 

  184. Lafer-Sousa R, Hermann KL, Conway BR. Striking individual differences in color perception uncovered by ‘the dress’ photograph. Curr Biol. 2015;25(13):R545–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Macknik SL, Martinez-Conde S. Unraveling “the dress”. Sci Am Mind. 2015;26(4):19–21.

    Article  Google Scholar 

  186. Winkler AD, Spillmann L, Werner JS, Webster MA. Asymmetries in blue-yellow color perception and in the color of ‘the dress’. Curr Biol. 2015;25(D):2–3.

    Google Scholar 

  187. Why do different observers see extremely different colours in the same photo?; http://lpp.psycho.univ-paris5.fr/feel/?page_id=929. Retrieved on September 16th, 2016.

  188. Bosten JM, Mollon JD. Is there a general trait of susceptibility to simultaneous contrast? Vision Res. 2010;50(17):1656–64.

    Article  CAS  PubMed  Google Scholar 

  189. Adelson EH. Lightness perception and lightness illusions, chapter 24. In: Gazzaniga M, editor. The new cognitive neurosciences, vol. 3. 2nd ed. Cambridge, MA: MIT Press; 2000. p. 339–51.

    Google Scholar 

  190. Kingdom FAA. Levels of brightness perception. In: Harris L, Jenkin M, editors. Levels of perception. New York: Springer; 2003. p. 23–46.

    Chapter  Google Scholar 

  191. Estes WK. The problem of inference from curves based on group data. Psychol Bull. 1956;53(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  192. Gallistel CR, Fairhurst S, Balsam P. The learning curve: implications of a quantitative analysis. Proc Natl Acad Sci U S A. 2004;101(36):13124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Neale M, Cardon L. Methodology for genetic studies of twins and families, vol. 67. Dordrecht, The Netherlands: Kluwer; 1992.

    Book  Google Scholar 

  194. Miller SM, Hansell NK, Ngo TT, Liu GB, Pettigrew JD, Martin NG, et al. Genetic contribution to individual variation in binocular rivalry rate. Proc Natl Acad Sci U S A. 2010;107(6):2664–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Peterzell DH, Teller DY. Individual differences in contrast sensitivity functions: the lowest spatial frequency channels. Vision Res. 1996;36(19):3077–85.

    Article  CAS  PubMed  Google Scholar 

  196. O’Herron P, von der Heydt R. Short-term memory for figure-ground organization in the visual cortex. Neuron. 2009;61(5):801–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Scocchia L, Cicchini GM, Triesch J. What’s “up”? Working memory contents can bias orientation processing. Vision Res. 2013;78:46–55.

    Article  PubMed  Google Scholar 

  198. Serences JT, Ester EF, Vogel EK, Awh E. Stimulus-specific delay activity in human primary visual cortex. Psychol Sci. 2009;20(2):207–14.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Silvanto J, Soto D. Causal evidence for subliminal percept-to-memory interference in early visual cortex. Neuroimage. 2012;59(1):840–5.

    Article  PubMed  Google Scholar 

  200. Sreenivasan KK, Gratton C, Vytlacil J, D’Esposito M. Evidence for working memory storage operations in perceptual cortex. Cogn Affect Behav Neurosci. 2014;14(1):117–28.

    Article  PubMed  PubMed Central  Google Scholar 

  201. de Fez MD, Capilla P, Luque MJ, Pérez-Carpinell J, del Pozo JC. Asymmetric colour matching: memory matching versus simultaneous matching. Color Res Appl. 2001;26(6):458–68.

    Article  Google Scholar 

  202. Jin EW, Shevell SK. Color memory and color constancy. J Opt Soc Am A. 1996;13(10):1981–91.

    Article  CAS  Google Scholar 

  203. Olkkonen M, Allred SR. Short-term memory affects color perception in context. PLoS One. 2014;9(1):e8648.

    Article  CAS  Google Scholar 

  204. Uchikawa K, Kuriki I, Tone Y. Measurement of color constancy by color memory matching. Opt Rev. 1998;5(I):59–63.

    Article  Google Scholar 

  205. Hansen T, Olkkonen M, Walter S, Gegenfurtner KR. Memory modulates color appearance. Nat Neurosci. 2006;9(11):1367–8.

    Article  CAS  PubMed  Google Scholar 

  206. Witzel C, Valkova H, Hansen T, Gegenfurtner KR. Object knowledge modulates colour appearance. i-Perception. 2011;2:13–49.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Runeson S. On the possibility of “smart” perceptual mechanisms. Scand J Psychol. 1977;18(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  208. Wagemans J, Elder JH, Kubovy M, Palmer SE, Peterson MA, Singh M, et al. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychol Bull. 2012;138(6):1172–217.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Wagemans J, Feldman J, Gepshtein S, Kimchi R, Pomerantz JR, van der Helm PA, et al. A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychol Bull. 2012;138(6):1218–52.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Koenderink JJ. Experimental phenomenology. In: Wagemans J, editor. Oxford handbook of perceptual organization. Oxford: Oxford University Press; 2015.

    Google Scholar 

  211. Yarbus AL. Eye movements and vision. New York: Plenum Press; 1967.

    Book  Google Scholar 

  212. Rozhkova GI, Nikolaev PP. Visual percepts in the cases of binocular and monocular viewing stabilized test objects, Ganzfeld stimuli, and prolonged afterimages. Perception. 2015. doi:10.1177/0301006615594957.

    Google Scholar 

  213. Shapley RM, Enroth-Cugell C. Visual adaptation and retinal gain controls. Prog Retin Res. 1984;3:263–345.

    Article  Google Scholar 

  214. Johnson EN, Hawken MJ, Shapley R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci. 2001;4(4):409–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

V.E. was supported by a grant from the Methusalem program by the Flemish Government (METH/08/02 and METH/14/02), awarded to Johan Wagemans. M.O. received support through the Academy Research Fellow program of the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Olkkonen M.A. (Psych), Dr. rer. nat. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olkkonen, M., Ekroll, V. (2016). Color Constancy and Contextual Effects on Color Appearance. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_6

Download citation

Publish with us

Policies and ethics