Skip to main content

Optical and Physical Methods for Mapping Flooding with Satellite Imagery

  • Chapter
  • First Online:

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contributing to billions of dollars economic damages as well as social effects including fatalities and destroyed communities. Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention and warning. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data. This chapter will review methods for mapping floods and open water using spectral formulas and statistical methods commenting on false color composite techniques with optical data, physical models using radar and ancillary data. Methods will be demonstrated over the Lower Mekong Basin to demonstrate visual impacts of the differences over the same study area. The increase in the quantity and variety of flood mapping techniques using satellite data has allowed broader and less-technical audiences to be able to benefit from flood products and may help to mitigate pervasive economic and social damages caused by flooding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas S, Nichol JE, Qamaer FM, Xu J (2014) Characterization of drought development through remote sensing: a case study in Central Yunnan, China. Remote Sens 4998–5018

    Google Scholar 

  • Ahamed A, Bolten JD (2016) Near real time flooding in Southeast Asia. Project Mekong. http://mekongflood.appspot.com/

  • Ali A, Quadir DA, Huh OK (1989) Study of river flood hydrology in Bangladesh with AVHRR data. Int J Remote Sens 10(12):1873–1891

    Article  Google Scholar 

  • Alsdorf DE, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002. doi:10.1029/2006RG000197

    Article  Google Scholar 

  • Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP (2007) A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J Geophys Res Atmos 112:D10117

    Article  Google Scholar 

  • Berkeley Lab (2016) Electromagnetic spectrum. http://www2.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.Print

  • Brakenridge GR, Anderson E (2006) MODIS-based flood detection, mapping and measurement: the potential for operational hydrological applications. In: Transboundary floods: reducing risks through flood management. NATO Science Series: Earth and Environmental Sciences, vol 72. pp 1–12

    Google Scholar 

  • Brakenridge GR, Daniel K (1996) The Dartmouth Flood Observatory: an electronic research tool and electronic archive for investigations of extreme flood events. In: Geological Society of America Annual Meeting, Geoscience Information Society Proceedings

    Google Scholar 

  • Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23(3):429–441. doi:10.1080/01431160010014729

    Article  Google Scholar 

  • Cai G, Du M, Liu Y (2011) Regional drought monitoring and analyzing using MODIS data – A case study in Yunnan Province. In Computer and Computing Technologies in Agriculture IV, Nanchang, China, 243–251

    Google Scholar 

  • California Institute of Technology Jet Propulsion Laboratory (2008) ASTER Spectral Library. California Institute of Technology, Pasadena

    Google Scholar 

  • Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. The Guilford Press, New York

    Google Scholar 

  • Chedin A et al (1984) The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N Series. http://dx.doi.org/10.1175/1520-0450(1985)

  • Chen Y, Huang C, Ticehurst C, Merrin L, Thew P (2013) An evaluation of MODIS DAILY and 8-day composite products for floodplain and wetland inundation mapping. Wetlands 33(5):823–835

    Google Scholar 

  • Choudhury BJ (1989) Monitoring global land surface using Nimbus-7 37 GHz data: theory and examples. Int J Remote Sens 10(10):1579–1605

    Article  Google Scholar 

  • Colwell JE (1974) Vegetation canopy reflectance. Remote Sens Environ 3:175–183

    Article  Google Scholar 

  • Eklundh L, Johansson T, Solberg S (2009) Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens Environ 113:1566–1573

    Article  Google Scholar 

  • Entakhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT et al (2010) The soil moisture active passive (SMAP) mission. In: Proceedings of the IEEE, vol 98. pp 704–716

    Google Scholar 

  • Fayne JV, Bolten JD (2014) Validating flood mapping products using a digital elevation model comparison technique. In: American Geophysical Union Fall Meeting Poster Presentation. San Francisco, CA

    Google Scholar 

  • Fayne JV, Bolten JD, Fuhrmann S, Rice MT (2015) Real-time multi-scale mapping for emergency management. In: International Cartographic Conference. Rio De Janeiro, Brazil

    Google Scholar 

  • Frazier PS, Page KJ (2000) Water body detection and delineation with Landsat TM data. Photogramm Eng Remote Sens 1461–1467

    Google Scholar 

  • Gallant JC, Dowling TI (2003) A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour Res 4:1–14

    Google Scholar 

  • Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  • Gopinath G, Ambili GK, Gregory SJ, Anusha CK (2014) Drought risk mapping of South-Western State in the Indian Peninsula—a web based application. J Environ Manage 161:453–459

    Article  Google Scholar 

  • Guerschman JP, Warren G, Byrne G, Lymburner L, Mueller N, Van Dijk A (2011) MODIS-based standing water detection for flood and large reservoir mapping: algorithm development and applications for the Australian continent. Report, Commonwealth Scientific and Industrial Research Organization

    Google Scholar 

  • Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual season mapping of inundation and vegetation for the Central Amazon Basin. Remote Sens Environ 87(2003):404–428

    Article  Google Scholar 

  • Holben BN (2007) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • Irons JR, Taylor MP, Laura R (2016) Landsat1. Landsat Science. NASA. Accessed 25 Mar 2016

    Google Scholar 

  • Jönsson AM, Eklundh L, Hellström M, Bärring L, Jönsson P (2010) Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sens Environ 114:2719–2730

    Article  Google Scholar 

  • Knebl MR, Yang Z-L, Hutchinson K, Maidment DR (2005) Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HSM/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. J Environ Manage 75:325–336

    Article  Google Scholar 

  • Krajewski WF, Smith JA (2002) Radar hydrology: rainfall estimation. Adv Water Resour 25:1387–1394

    Article  Google Scholar 

  • Kwak Y, Arifuzzanman B, Iwami Y (2015) Prompt proxy mapping of flood damaged rice fields using MODIS-derived indices. Remote Sens 7:15969–15988. doi:10.3390/rs71215805

    Article  Google Scholar 

  • Lacaux JP, Tourre YM, Vignolles C, Ndione JA, Lafaye M (2006) Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley Fever epidemics in Senegal. Remote Sens Environ 106:66–74

    Article  Google Scholar 

  • Lakshmi V (2013) Remote sensing of soil moisture. ISRN Soil Science. http://dx.doi.org/10.1155/2013/424178

  • Lant JG (2013) Flood-inundation maps for a 6.5-mile reach of the Kentucky river at Frankfort, Kentucky. Pamphlet to accompany Scientific Investigations Map 3278, USGS

    Google Scholar 

  • Lei J, Zhang L, Wylie B (2009) Analysis of dynamic thresholds for the normalized difference water index. Photogramm Eng Remote Sens 75(11):1307–1317

    Article  Google Scholar 

  • Lei S et al (2016) Algorithm development of temperature and humidity profile retrievals for long-term HIRS observations. http://www.mdpi.com/2072-4292/8/4/280

  • Li S, Sun D, Goldberg ME, Sjoberg B (2015) Object based automatic terrain shadow removal from SNPP/VIIRS flood maps. Int J Remote Sens 36(21):5504–5522

    Article  Google Scholar 

  • Liou KL (2002) An introduction to atmospheric radiation. Academic, New York

    Google Scholar 

  • Manavalan P, Sathyanath P, Rajegowda GL (1993) Digital image analysis techniques to estimate waterspread for capacity evaluations of reservoirs. Photogramm Eng Remote Sens 59(9):1389–1395

    Google Scholar 

  • McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432

    Article  Google Scholar 

  • MODIS Data was Downloaded from LP DAAC Data Pool. http://e4ftl01.cr.usgs.gov/MOLT/MOD09A1.005/2013.10.24/MOD09A1.A2013297.h28v07.005.2013316135122.hdf

  • MODIS Data was processed using the MODIS Reprojection Tool. https://lpdaac.usgs.gov/tools/modis_reprojection_tool

  • Mueller N, Lewis A, Roberts D, Ring S, Melrose R, Sixsmith J, Lymburner L, McIntyre A, Tan P, Curnow S, Ip A (2016) Water observations from space: mapping surface water form 25 years of Landsat imagery across Australia. Remote Sens Environ 174:341–352

    Article  Google Scholar 

  • Hasan M, Saiful Islam AKM (2011) Drought Assessment using remote sensing and GIS in North-West region of Bangladesh. Proceedings of the 3rd International Conference on Water & Flood Management, 797–804

    Google Scholar 

  • Nash MS, Bradford DF, Wickham JD, Wade TG (2014) Detecting change in landscape greenness over large areas: an example for New Mexico, USA. Remote Sens Environ 150:152–162

    Article  Google Scholar 

  • National Snow and Ice Data Center NSIDC (2015) SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 3 http://nsidc.org/data/docs/daac/smap/sp_l3_smp/

  • National Snow and Ice Data Center (2016) NASA Distributed Active Archive Center (DAAC) at NSIDC: SMAP Data. http://nsidc.org/data/SMAP

  • Nigro J, Slayback D, Policelli F, Brakenridge R (2014) NASA/DFO MODIS near real-time (NRT) global flood mapping product evaluation of flood and permanent water detection. Evaluation, Greenbelt, MD

    Google Scholar 

  • NOAA-NESDIS VIIRS User’s Guide (2013) NOAA-NESDIS Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide September 2013. http://www.star.nesdis.noaa.gov/smcd/spb/nsun/snpp/VIIRS/VIIRS_SDR_Users_guide.pdf

  • NOAA SIS (2013) NOAA Satellite Information System: advanced very high resolution radiometer—AVHRR. http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html. Accessed 26 Nov 2013

  • Parinussa RM, de Jeu RAM, Holmes TRH, Walker JP (2008) Comparison of microwave and infrared land surface temperature products over the NAFE’06 research sites. IEEE Geosci Remote Sens Lett 5(4):783–787

    Article  Google Scholar 

  • Parinussa RM, Lakshmi V, Johnson F, Sharma A (2016) Comparing and combining remotely sensed land surface temperature products for improved hydrological applications. Remote Sens 8(2):162. doi:10.3390/rs8020162

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2009) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510

    Google Scholar 

  • Ramsey E III, Werle D, Suzuoki Y, Rangoonwala A, Lu Z (2012) Limitations and potential of satellite imagery to monitor environmental response to coastal flooding. J Coastal Res 28:457–476

    Article  Google Scholar 

  • Rasid H, Pramanik MAH (1990) Visual interpretation of satellite imagery for monitoring floods in Bangladesh. J Environ Manage 14:815–821

    Article  Google Scholar 

  • Revilla-Romero B, Hirpa FA, Thielen-del Pozo J, Salamon P, Brakenridge R, Pappenberger F, De Groeve T (2015) On the use of global flood forecasts and satellite-derived inundation maps for flood monitoring in data-sparse regions. Remote Sens 7:15702–15728. doi:10.3390/rs71115702

    Article  Google Scholar 

  • Rosenqvist A, Birkett CM (2002) Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. Int J Remote Sens 23:1283–1302

    Article  Google Scholar 

  • Rouse JW Jr, Haas RH, Schell JA, Deering DW (1973) Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. Type II report. Goddard Space Flight Center, Greenbelt, MD, pp 1–93

    Google Scholar 

  • Sarp G (2011) Determination of vegetation change using thematic mapper imagery in Afşin-Elbistan Lignite Basin; SE Turkey. Procedia Technol 1:407–411

    Article  Google Scholar 

  • Schaaf K, Lakshmi V (2000) Analysis of the 1993 midwestern flood using satellite and ground data. IEEE Trans Geosci Remote Sens 39(8)

    Google Scholar 

  • Smith L (1997) Satellite remote sensing river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439

    Article  Google Scholar 

  • Song X, Saito G, Kodama M, Sawada H (2004) Early detection system of drought in East Asia using NDVI from NOAA/AVHRR data. Int J Remote Sens 25:3105–3111

    Article  Google Scholar 

  • Sun DL, Yu YY, Zhang R, Li SM, Goldberg MD (2012) Toward operational automatic flood detection using EOS-MODIS. Photogramm Eng Remote Sens 78(6):637–646

    Article  Google Scholar 

  • Swets DL, Reed BC, Rowland JD, Marko, SE (1999) A weighted least-squares approach to temporal NDVI smoothing. In: ASPRS Annual Conference: From Image to Information, Portland, Oregon, 17–21 May. American Society of Photogrammetry and Remote Sensing, Bethesda, MD

    Google Scholar 

  • Terra MODIS Surface Reflectance 8-Day L3 Global 500m (MOD09A1). https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09a1

  • The MODIS data products were retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool

  • Townsend PA, Walsh SJ (1998) Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 21:295–312

    Article  Google Scholar 

  • Töyrä J, Pietroniro A, Martz LW, Prowse TD (2002) A multi-sensor approach to wetland flood monitoring. Hydrol Process 16:1569–1581

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • United Nations Institute of Training and Research (2013) UNOSAT: Maps and Data. http://www.unitar.org/unosat/maps/KHM

  • United States Army Corps of Engineers. HEC-RAS. The Hydrologic Engineering Center. http://www.hec.usace.army.mil/

  • University of California, Berkeley. Remote Sensing and Image Analysis: Atmospheric Correction of Remotely Sensed Data. http://nature.berkeley.edu/~penggong/textbook/chapter5/html/sect52.htm

  • USGS (2013) Landsat 7. Scan Line Corrector (SLC) -off Products http://landsat.usgs.gov/products_slcoffbackground.php

  • USGS. 2013. Landsat 1 History http://landsat.usgs.gov/about_landsat1.php

  • USGS (2014) Spectral Characteristics Viewer. http://landsat.usgs.gov//tools_spectralViewer.php

  • USGS (2015) Landsat 8 TIRS Scene Select Mechanism (SSM) Anomaly. http://landsat.usgs.gov/calibration_notices.php

  • van Dijk A, Callis SL, Sakamoto CM, Decker WL (1987) Smoothing vegetation index profiles: an alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogramm Eng Remote Sens 53:1059–1067

    Google Scholar 

  • Wan Z (1999) MODIS Land Surface Temperature Algorithm Theoretical Basis Document (LST ATBD). http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf

  • Wu H, Adler RF, Tian Y, Huffman GJ, Li H, Wang J (2014) Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour Res 50(3):2693–2717

    Article  Google Scholar 

  • Xaio X, Boles S, Liu J, Zhuang D, Frolking S, Li C, Salas W, Moore B III (2004) Mapping rice paddy agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ 95:480–492

    Article  Google Scholar 

  • Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Stahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Fayne B.A., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fayne, J., Bolten, J., Lakshmi, V., Ahamed, A. (2017). Optical and Physical Methods for Mapping Flooding with Satellite Imagery. In: Lakshmi, V. (eds) Remote Sensing of Hydrological Extremes. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-43744-6_5

Download citation

Publish with us

Policies and ethics