Skip to main content

Sound of Vision - Spatial Audio Output and Sonification Approaches

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9759))

Abstract

The paper summarizes a number of audio-related studies conducted by the Sound of Vision consortium, which focuses on the construction of a new prototype electronic travel aid for the blind. Different solutions for spatial audio were compared by testing sound localization accuracy in a number of setups, comparing plain stereo panning with generic and individual HRTFs, as well as testing different types of stereo headphones vs custom designed quadrophonic proximaural headphones. A number of proposed sonification approaches were tested by sighted and blind volunteers for accuracy and efficiency in representing simple virtual environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Strumiłło, P.: Elektroniczne systemy nawigacji osobistej dla niewidomych i słabowidzących [Electronic personal navigation systems for the blind and visually impaired], PŁ, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Łódź (2012)

    Google Scholar 

  2. Bujacz, M., Skulimowski, P., Strumiłło, P.: Naviton - a prototype mobility aid for auditory presentation of 3D scenes. J. Audio Eng. Soc. 60(9), 696–708 (2012)

    Google Scholar 

  3. Skulimowski, P., Strumillo, P.: Obstacle localization in 3D scenes from stereoscopic sequences. In: 15th European Signal Processing Conference EUSIPCO 2007, Poznan, Poland (2007)

    Google Scholar 

  4. Owczarek, M., Skulimowski, P., Strumillo, P.: Sound of Vision – 3D scene reconstruction from stereo vision in an electronic travel aid for the visually impaired. In: Computers Helping People with Special Needs. LNCS. Springer, Heidelberg (2016, in press)

    Google Scholar 

  5. Dobrucki, A., Plaskota, P., Pruchnicki, P., Pec, M., Bujacz, M., Strumiłło, P.: Measurement system for personalized head-related transfer functions and its verification by virtual source localization trials with visually impaired and sighted individuals. J. Audio Eng. Soc. 58(9), 724–738 (2010)

    Google Scholar 

  6. Gardner, W.G., Martin, K.D.: HRTF measurements of a KEMAR. J. Acoust. Soc. Am. 97(6), 3907–3908 (1995)

    Article  Google Scholar 

  7. Middlebrooks, J.C., Macpherson, E.A., Onsan, Z.A.: Psychophysical customization of directional transfer functions for virtual sound localization. J. Acoust. Soc. Am. 108(6), 3088–3091 (2000)

    Article  Google Scholar 

  8. Geronazzo, M., Spagnol, S., Bedin, A., Avanzini, F.: Enhancing vertical localization with image-guided selection of non-individual head-related transfer functions. In: Proceeding IEEE International Conference Acoustics, Speech and Signal Processing ICASSP 2014, pp. 4496–4500 (2014)

    Google Scholar 

  9. Zotkin, D.N., Hwang, J., Duraiswami, R., Davis, L.S.: HRTF personalization using anthropomentric measurements. In: Proceeding IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2003), pp. 157–160 (2003)

    Google Scholar 

  10. Dobrucki, A., Plaskota, P.: Computational modelling of head-related transfer function. Arch. Acoust. 32, 659–682 (2007)

    Google Scholar 

  11. Spagnol, S., Avanzini, F.: Frequency estimation of the first Pinna Notch in head-related transfer functions with a linear anthropometric model. In: Proceeding 18th International Conference Digital Audio Effects (DAFx-2015), pp. 231–236 (2015)

    Google Scholar 

  12. Trapenskas, D., Frenne, N., Johansson, Ö.: Relationship between HRTF’s and anthropometric data. In: The 29th International Congress and Exhibition on Noise Control Engineering (2000)

    Google Scholar 

  13. Wightman, F.L., Kistler, D.J.: Factors affecting the relative salience of sound localization cues. In: Binaural and Spatial Hearing in Real and Virtual Environments, pp. 1–24. Lawrence Erlbaum Associates, Mahwah (1997)

    Google Scholar 

  14. Bălan, O., Moldoveanu, A., Moldoveanu, F., Morar, A.: Experiments on training the human localization abilities. In: Proceedings of the 10th International Scientific Conference eLearning and Software for Education, Bucharest (2014)

    Google Scholar 

  15. Bălan, O., Moldoveanu, A., Butean, A., Moldoveanu, F., Negoi, I.: Comparative research on sound localization accuracy in the free-field and virtual auditory displays. In: The 11th eLearning and Software for Education Conference - eLSE 2015 (2015)

    Google Scholar 

  16. Bălan, O., Moldoveanu, A., Moldoveanu, F., Negoi, I.: The role of perceptual feedback training on sound localization accuracy in audio experiments. In: Proceedings of The 11th International Scientific Conference eLearning and software for Education (2015)

    Google Scholar 

  17. Vitek, S., Klima, M., Husnik, L., Spirk, D.: New possibilities for blind people navigation. In: IEEE 2011 International Conference on Applied Electronics (AE), Plisen (2011)

    Google Scholar 

  18. Hersh, M., Johnson, M.: Assistive technology for visually impaired and blind people. Springer, London (2008)

    Book  Google Scholar 

  19. Farcy, R., Bellik, Y., Locomotion assistance for the blind. In: Keates S., Langdom P., Clarkson P., Robinson P. (eds.) Universal Access and Assistive Technology, pp. 277–284. Springer, London (2002)

    Google Scholar 

  20. Manduchi, R., Coughlan, J.M., Ivanchenko, V.: Search strategies of visually impaired persons using a camera phone wayfinding system. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1135–1140. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Matusiak, K., Skulimowski, P., Strumillo, P.: A mobile phone application for recognizing objects as a personal aid for the visually impaired users. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T., Wtorek, J. (eds.) Human-Computer Systems Interaction: Backgrounds and Applications 3. Advances in Intelligent Systems and Computing, vol. 300, pp. 201–212. (2014)

    Google Scholar 

  22. Skulimowski, P., Korbel, P., Wawrzyniak, P.: POI Explorer - a sonified mobile application aiding the visually impaired in urban navigation In: Proceeding of FedCSIS, ACSIS-Annals of Computer Science and Information Systems, vol. 2, pp. 969–976 (2014)

    Google Scholar 

  23. Ferreira, E.J., Navmetro: Preliminary study application of usability assessment methods. In: Human Factors in Design (2013)

    Google Scholar 

  24. Mayerhofer, B., Pressl, B., Wieser, M.: ODILIA - a mobility concept for the visually impaired. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1109–1116. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. González-Mora, J., Rodríguez-Hernández, A., Rodríguez-Ramos, L.: Development of a new space perception system for blind people, based on the creation of a virtual acoustic space. In: Mira, J., Sánchez-Andrés, J.V. (eds.) Engineering Applications of Bio-Inspired Artificial Neural Networks, pp. 321–330. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Hermann, T., Hunt. A., Neuhoff, J.G.: The Sonification Handbook. Logos Verlag, Berlin (2011)

    Google Scholar 

  27. Shoval, S., Borenstein, J., Koren, Y.: Auditory guidance with the Navbelt - a computerized travel aid for the blind. IEEE Trans. Syst. Man Cybern. 28(3), 459–467 (1998)

    Article  Google Scholar 

  28. Bujacz, M., Strumiłło, P.: Stereophonic representation of virtual 3D scenes - a simulated mobility aid for the blind. In: Dobrucki, A., Petrovsky, A., Skarbek, W. (eds.) New Trends in Audio and Video, vol. 1, pp. 157–162 (2006)

    Google Scholar 

  29. Balan, O., Moldoveanu, A., Moldoveanu, F., Dascalu, M.I.: Audio games- a novel approach towards effective learning in the case of visually-impaired people. In: Proceeding 7th Int. Conference of Education, Research and Innovation, p. 7, Seville (2014)

    Google Scholar 

  30. Saitis, C., Kalimeri, K.: Identifying Urban mobility challenges for the visually impaired with mobile monitoring of multimodal biosignals. In: Antona, M., Stephanidis, C. (eds.) Universal Access in Human-Computer Interaction - 10th International Conference, UAHCI 2016, Held as Part of HCI International 2016, Toronto, ON, Canada, 17-22 July 2016, Proceedings. Springer-Verlag, Berlin (2016, in press)

    Google Scholar 

Download references

Acknowledgment

This work received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 643636 “Sound of Vision”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Bujacz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bujacz, M. et al. (2016). Sound of Vision - Spatial Audio Output and Sonification Approaches. In: Miesenberger, K., Bühler, C., Penaz, P. (eds) Computers Helping People with Special Needs. ICCHP 2016. Lecture Notes in Computer Science(), vol 9759. Springer, Cham. https://doi.org/10.1007/978-3-319-41267-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41267-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41266-5

  • Online ISBN: 978-3-319-41267-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics