Skip to main content

Specification of Symbols Used in Audio-Tactile Maps for Individuals with Blindness

  • Conference paper
  • First Online:
Computers Helping People with Special Needs (ICCHP 2016)

Abstract

The implementation of multisensory environments in the field of map construction for individuals with visual impairments can be a challenging area for both users and designers of orientation and mobility aids. Audio-tactile maps can utilize a large amount of spatial information represented by audio symbols, tactile symbols, audio-tactile symbols (combined) and Braille labels. In regard to audio-tactile maps an important clarification needs to be elaborated and in particular what needs to be carefully examined is the basic query of which information should be presented in haptic mode and which information should be presented in audio or audio-haptic mode. In practice this means that a reasoned process of defining the appropriate symbols for audio-tactile maps should be implemented. The fundamental aim of project “ATMAPS” - Specification of symbols used on Audio-Tactile Maps for individuals with blindness” presented in this paper is the specification of symbols to be used in audio-tactile maps for individuals with blindness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papadopoulos, K.S.: Automatic transcription of tactile maps. J. Vis. Impairment Blindness 99(4), 242–245 (2005)

    Google Scholar 

  2. Espinosa, M.A., Ochaita, E.: Using tactile maps to improve the practical spatial knowledge of adults who are blind. J. Vi. Impairment Blindness 92(5), 338–345 (1998)

    Google Scholar 

  3. Papadopoulos, K., Livieratos, E., Boutoura, C.: A large scale city atlas for the blind. In: Proceedings of the 20th International Cartographic Conference of ICA, Beijing, China (2001)

    Google Scholar 

  4. Papadopoulos, K., Karanikolas, N.: Tactile maps provide location based services for individuals with visual impairments. J. Location Based Servi. 3(3), 150–164 (2009)

    Article  Google Scholar 

  5. Papadopoulos, K., Barouti, M., Charitakis, K.: A university indoors audio-tactile mobility aid for individuals with blindness. In: Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., Zagler, W. (eds.) ICCHP 2014, Part II. LNCS, vol. 8548, pp. 108–115. Springer, Heidelberg (2014)

    Google Scholar 

  6. Lawrence, M.M., Lobben, A.K.: The design of tactile thematic symbols. J. Vis. Impairment Blindness 105(10), 681–691 (2011)

    Google Scholar 

  7. Zeng, L., Weber, G.: Accessible maps for the visually impaired. In: Proceedings of IFIP INTERACT 2011 Workshop on ADDW, pp. 54–60. Lisbon, Portugal (2011)

    Google Scholar 

  8. Harder, A., Michel, R.: The target-route map: evaluating its usability for visually impaired persons. J. Vis. Impairment Blindness 96(10), 711–723 (2002)

    Google Scholar 

  9. Jacobson, R.D.: Navigating maps with little or no sight: An audio-tactile approach. In: Proceedings of Content Visualization and Intermedia Representations, pp. 95–102. Montréal, Québec, Canada (1998)

    Google Scholar 

  10. Brock, A., Truillet, P., Oriola, B., Picard, D., Jouffrais, C.: Design and user satisfaction of interactive maps for visually impaired people. In: Miesenberger, K., Karshmer, A., Penaz, P., Zagler, W. (eds.) ICCHP 2012, Part II. LNCS, vol. 7383, pp. 544–551. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Brock, A.M.: Interactive Maps for Visually Impaired People: Design, Usability and Spatial Cognition. Doctoral Dissertation. University of Toulouse (2013)

    Google Scholar 

  12. Holmes, E., Jansson, G.: A touch tablet enhanced with synthetic speech as a display for visually impaired people’s reading of virtual maps. In: Proceedings of CSUN 12th Annual Conference on Technology for People with Disabilities. California State University, LA (1997)

    Google Scholar 

  13. Miele, J.A., Landau, S., Gilden, D.: Talking TMAP: Automated generation of audio-tactile maps using Smith-Kettlewell’s TMAP software. British J. Vis. Impairment 24, 93–100 (2006)

    Article  Google Scholar 

  14. Wang, Z., Li, B., Hedgpeth, T., Haven, T.: Instant tactile-audio map: enabling access to digital maps for people with visual impairment. In: Proceedings of ASSETS, pp. 43–50. ACM, Pittsburgh (2009)

    Google Scholar 

  15. James, G.A., Armstrong, J.D.: Handbook for mobility maps. Blind Mobility Research Unit. Nottingham University, Nottingham (1976)

    Google Scholar 

  16. Blindenstudienanstalt, D.: Euro-Town-Kit; Standard Symbols for the Production of Tactile Maps. Deutsches Blindenstudienanstalt, Marburg (1989)

    Google Scholar 

  17. Edman, P.K.: Tactile graphics. AFB, NY (1992)

    Google Scholar 

  18. Paladugu, D.A., Wang, Z., Li, B.: On presenting audio-tactile maps to visually impaired users for getting directions. In: Proceedings of CHI, pp. 3955–3960. ACM Press, Atlanta (2010)

    Google Scholar 

  19. Bris, M.: Rapport « Tactimages & Training » , pp. 1–34. Paris, France (1999)

    Google Scholar 

  20. Tatham, A.F.: The design of tactile maps: theoretical and practical considerations. In: Proceedings of International Cartographic Association: Mapping the Nations, pp. 157–166. K Rybaczak and M Blakemore, London, UK (1991)

    Google Scholar 

  21. Picard, D.: Visuo-tactile atlas. Organisation mondiale de la propriété intellectuelle, France (2012)

    Google Scholar 

  22. Lobben, A., Lawrence, M.: The use of environmental features on tactile maps by navigators who are blind. Prof. Geogr. 64, 95–108 (2012)

    Article  Google Scholar 

  23. Braille Authority of North America: Guidelines and standards for tactile graphics. Last retrieved March 2016. http://www.brailleauthority.org/tg/web-manual/index.html

  24. Abd Hamid, N.N., Edwards, A.D.: Facilitating route learning using interactive audio-tactile maps for blind and visually impaired people. In: Proceedings of the CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 37–42. ACM, New York (2013)

    Google Scholar 

Download references

Acknowledgements

The work presented in this paper was conducted in the frames of the ATMAPS project titled “Specification of symbols used on audio-tactile maps for individuals with blindness” under the Lifelong Learning Programme (LLP). The project (543316-LLP-1-2013-1-GR-KA3-KA3MP) has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Charitakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Papadopoulos, K. et al. (2016). Specification of Symbols Used in Audio-Tactile Maps for Individuals with Blindness. In: Miesenberger, K., Bühler, C., Penaz, P. (eds) Computers Helping People with Special Needs. ICCHP 2016. Lecture Notes in Computer Science(), vol 9759. Springer, Cham. https://doi.org/10.1007/978-3-319-41267-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41267-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41266-5

  • Online ISBN: 978-3-319-41267-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics