Skip to main content

The Crucial Relevance of ALA and LA as Primary Peroxisomal Beta-Oxidation Substrates, of Oxidised LA as the Primary Endogenous Activator of PPAR Gamma, and Energy Deficit as the Primary Activator of PPAR Alpha

  • Chapter
  • First Online:

Abstract

Peroxisomes are multifunctional organelles of great physiological importance and essential to development and health. They ‘harbour’ about 50 different enzyme activities. Peroxisomal malfunction has severe functional consequences, which manifest in a variety of health conditions, including Zellweger syndrome, with widespread and significant effects, including risk of early mortality, impaired cerebral development, functional issues, and deficient energy production. There are a wide range of peroxisomal activators with different activation capacities, some of which are common between PPAR alpha, delta, and gamma, peroxisome types, and some of which are applicable to specific PPARs. Peroxisomes and their products are underappreciated partners fundamental to healthy function of energy pathways, oxidative pathways, immune function including likely supporting macrophage phagocytosis, detoxification, and lipid including cholesterol production pathways. Peroxisomes produce medium fats (MCFs), acetyl coenzyme A (ACoA), and peroxide as lipid beta-oxidation by-products. The catalase enzyme located in peroxisomes produces catalase. Crucially, LA and ALA are the preferred beta-oxidation substrates of peroxisomes. Oxidised LA products, such as the HODEs, often the most common oxylipins in plasma, are the primary endogenous activators of PPAR gamma. MCFs and ACoA produced by PPAR gamma-related peroxisomal activation are generally directed by related gene activation to support tissue maintenance and repair, including production of lipids and cholesterol. The importance and functional relevance of PPAR gamma related peroxisomes is raised by the increased consumption of LA, within the context of a highly processed antioxidant-diminished nutrient deficient preoxidised western diet. PPAR alpha-related peroxisomally produced MCFs and ACoA are likely used to significantly assist fuel the brain and wider body during periods of glucose depletion, and are arguably more important than ketosis as a fuel source. Activation of PPAR alpha pathways, as well as assisting energy production pathways through related gene activation, results in diversion of lipid substrate away from maintenance pathways so reducing related oxidative stress and inflammation, as well as being associated with increased antioxidant protection. The main PPAR alpha activators include energy deficit stress, primarily exercise or fasting, giving them particular physiological relevance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

Arachidonic acid (omega-6; 20 carbon derivative of LA)

ACoA:

Acetyl coenzyme A (raw material for the energy/cholesterol pathways)

ALA:

Alpha-linolenic acid (omega-3 18 carbon plant-based polyunsaturated fat)

APOE:

Apolipoprotein E (lipid transport signature protein)

ATP:

Adenosine triphosphate (enzyme used as an energy carrier)

CD36:

Cluster of differentiation 36 (fatty acid translocase receptor)

COX:

Cyclooxygenase (enzyme catalysing oxidation of fatty acids)

CPT1:

Carnitine palmitoyltransferase (acts as shuttle mainly for long chain fats C:16-18 into mitochondria)

DHA:

Docosahexaenoic acid (omega-3 22 carbon derivative of ALA)

EPA:

Eicosapentaenoic acid (omega-3 fatty acid C20:5)

GSH:

Glutathione(s) (a very important antioxidant family)

GLA:

Gamma-linoleic acid (omega-6 fatty acid C18:3)

HMGCoA:

3-hydroxy-3-methyl-glutaryl-CoA (Found in two forms reductase and synthase. Reductase regulates cholesterol production. Synthase regulates HMGCoA production. HMGCoA is substrate for ketones or cholesterol)

HSL:

Hormone-sensitive lipase (different forms mobilise lipids from triglycerides and esters including from adipose tissue)

iNOS:

Inducible nitric oxide synthase (inducible isoform involved in stress response in macrophages/microglia and other tissues)

LA:

Linoleic acid (omega-6 18 carbon plant-based polyunsaturated fat)

LOX5:

Lipoxygenase (enzyme catalysing oxidation including AA and EPA)

LOX12/15:

Lipoxygenases (enzymes catalysing oxidation of multiple lipid-based substrates)

LDLR:

Low-density lipoprotein (LDL) receptor (LDL receptor for minimally oxidised LDL)

LPL:

Lipoprotein lipase (mobilises lipids from Chylomicrons, VLDL, and LDL; both at the vascular face and intercellularly)

MCAD:

Medium-chain acyl-coenzyme A (dehydrogenation of fats C:6-12 in mitochondria and present in inner mitochondrial membrane)

MCT:

Medium-chain triglyceride (triglyceride containing fats between C:6 and C:12)

MCF:

Medium-chain fat (a fat between C:6 and C:12)

NO:

Nitric oxide (an important signalling messenger and oxidant)

OA:

Oleic acid (omega-9 monosaturated fat C18:1)

OLR1:

Oxidized LDL receptor 1 (receptor for oxidised LDL sometimes called LOX1)

PA:

Palmitic acid (saturated fat C:16)

PPAR:

Peroxisome proliferator-activated receptor (3 forms alpha, gamma, and delta)

ROS:

Reactive oxygen species (reactive molecules containing oxygen)

SA:

Stearic acid (saturated fat C:18)

SCD1:

Stearoyl-CoA desaturase (delta-9-desaturase so key to formation of OA)

SOD:

Superoxide dismutase (reduces superoxide to oxygen or peroxide)

Wy14643:

PPAR alpha activator (activates PPAR alpha-related peroxisomes)

4HNE:

4-Hydroxynonenal (exclusive omega-6 fats peroxidation aldehyde)

9HODE:

9-hydroxy-10E, 12Z-octadecadienoic acid (major LA oxidation product of LOX12/15, COX, photo-oxidation and autoxidation)

13HODE:

13-hydroxy-9Z, 11E-octadecadienoic acid (major LA oxidation product of LOX12/15, COX, photo-oxidation and autoxidation)

References

  1. Delille H, Bonekamp N, Schrader S. Peroxisomes and disease—an overview. Int J Biomed Sci. 2006;2(4):308–14.

    PubMed  PubMed Central  Google Scholar 

  2. Kondrup J, Lazarow P. Flux of palmitate through the peroxisomal and mitochondrial beta-oxidation systems in isolated rat hepatocytes. Biochim Biophys Acta. 1985;835(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  3. Müller M, Mentel M, van Hellemond J, Henze K, Woehle C, Gould S, Yu R, van der Giezen M, Tielens A, Martin W. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76(2):444–95.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ravnskjaer K, Frigerio F, Boergesen M, Nielsen T, Maechler P, Mandrup S. PPAR delta is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J Lipid Res. 2010;51(6):1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borel V, Gallot D, Marceau, G, Sapin V, Blanchon L. Placental implications of peroxisome proliferator-activated receptors in gestation and parturition. doi:10.1155/2008/758562.

    Google Scholar 

  6. Arck P, Toth B, Pestka A, Jeschke U. Nuclear receptors of the peroxisome proliferator activated (PPAR) family in gestational diabetes from animal models to clinical trials. doi:10.1095/biolreprod.110.083550.

    Google Scholar 

  7. Russell A, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier C, Bell D, Kralli A, Giacobino JP, Dériaz O. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52(12):2874–81.

    Article  CAS  PubMed  Google Scholar 

  8. Guelzim N, Huneau J, Mathé V, Quignard-Boulangé A, Martin P, Tomé D, Hermier D. Consequences of PPAR(α) invalidation on glutathione synthesis: interactions with dietary fatty acids. PPAR Research. 2011;2011:256186.

    Google Scholar 

  9. Burkart E, Sambandam N, Han X, Gross R, Courtois M, Gierasch C, Shoghi K, Welch M, Kelly D. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. doi:10.1172/JCI32578.

  10. Kersten S. Integrated physiology and systems biology of PPARα. doi:10.1016/j.molmet.2014.02.002.

    Google Scholar 

  11. Wayman N, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee P, Thiemermann C. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J. 2002;16(9):1027–40.

    Article  CAS  PubMed  Google Scholar 

  12. Bionaz M, Shuowen Chen, Muhammad J. Khan, and Juan J. Loor Functional role of PPARs in ruminants: potential targets for fine-tuning metabolism during growth and lactation. http://dx.doi.org/10.1155/2013/684159.

  13. Evans R, Barish G, Wang Y. PPARs and the complex journey to obesity. Nat Med. 2004;10:355–61.

    Article  CAS  PubMed  Google Scholar 

  14. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. 2014;13:17.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lefebvre M, Paulweber B, Fajas L, Woods J, McCrary C, Colombel J, Najib J, Fruchart J, Datz C, Vidal H, Desreumaux P, Auwerx J. Peroxisome proliferator-activated receptor gamma is induced during differentiation of colon epithelium cells. J Endocrinol. 1999;162(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  16. El Akoum S. PPAR gamma at the crossroads of health and disease: a masterchef in metabolic homeostasis. Endocrinol Metab Synd. 2014;3:1.

    Article  Google Scholar 

  17. Chen H, Shi R, Luo B, YangX, Qiu L, Xiong J, Jiang M, Liu Y, Zhang Z, Wu Y. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice. Cell Death Dis. 2015;6:e1597; doi:10.1038/cddis.2014.544.

    Google Scholar 

  18. Hiltunen J, Kark T, Hassinen I, Osmundsen H. Beta-oxidation of polyunsaturated fatty acids by rat liver peroxisomes. vol. 261(35), Issue of December 15. pp. 16484–16493 19.

    Google Scholar 

  19. Hovik R, Osmundsen H. Peroxisomal beta-oxidation of long-chain fatty acids possessing different extents of unsaturation. Biochem J. 1987;247(3):531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hettema E, Tabak H. Transport of fatty acids and metabolites across the peroxisomal membrane. Biochimica et Biophysica Acta 1486. 2000. pp. 18–27.

    Google Scholar 

  21. Mannaerts G, Van Veldhoven P. Peroxisomal beta-oxidation. Verh K Acad Geneeskd Belg. 1993;55(1):45–78.

    CAS  PubMed  Google Scholar 

  22. Masters C, Crane D. The peroxisome a vital Organelle. Cambridge University Press; 1995. ISBN. 978-0-521-03683-2.

    Google Scholar 

  23. Ghosh S, Qi D, An D, Pulinilkunnil T, Abrahani A, Kuo K, Wambolt R, Allard M, Innis S, Rodrigues B. Brief episode of STZ-induced hyperglycemia produces cardiac abnormalities in rats fed a diet rich in n-6 PUFA. Am J Physiol Heart Circ Physiol. 2004;287(6):H2518–27.

    Article  CAS  PubMed  Google Scholar 

  24. Poirier Y, Antonenkov V, Glumoff T, Hiltunen J. Peroxisomal beta-oxidation–a metabolic pathway with multiple functions. Biochim Biophys Acta. 2006;1763(12):1413–26.

    Article  CAS  PubMed  Google Scholar 

  25. Qian G. Role of peroxisomes in physiology and pathology of ossification and bone metabolism. Justus-Liebig-Universität Gießen. ISBN. 978-3-8359-5698-8.

    Google Scholar 

  26. Moyes C, Suarez R, Brown G, Hochachka P. Peroxisomal beta-oxidation: insights from comparative biochemistry. J Exp Zool. 1991;260(2):267–73.

    Article  CAS  PubMed  Google Scholar 

  27. Trumble S, Kanatous S. Fatty acid use in diving mammals: more than merely fuel. Front Physiol. 2012;3:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phinney S, Horton E, Sims E, Hanson J, Danforth E Jr, LaGrange B. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J Clin Invest. 1980;66(5):1152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dobromylskyj P. Endurance and oxygen flux during fatty acid oxidation. Hyperlipid Blog. http://high-fat-nutrition.blogspot.com/2016/04/endurance-and-oxygen-flux-during-fatty.html.

  30. Bojes H, Sausen P, Cattley R, Keller B, Thurman R. Paradoxical increase in peroxisomal cyanide-insensitive respiration following dietary exposure to WY-14,643 in the perfused liver. Toxicol Appl Pharmacol. 1996;137(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  31. Pahan K, Smith B, Singh I. Epoxide hydrolase in human and rat peroxisomes: implication for disorders of peroxisomal biogenesis. J Lipid Res. 1996;37:159–67.

    CAS  PubMed  Google Scholar 

  32. Wresdiyati T, Makita T. Remarkable increase of peroxisomes in the renal tubules cells of Japanese monkeys under fasting stress. Pathophysiology. 1995;2:177–82.

    Article  Google Scholar 

  33. Luci S. PPARα-Aktivierung auf Parameter des Stoffwechsels von Lipiden, Schilddrüsenhormonen und Carnitin bei Schwein und Ratte als Modelltieren geb. am 10.11.1977in Halle/Saale Wirkungen einerurn:nbn:de:gbv:3-000012442.

    Google Scholar 

  34. Roels F, De Bie S, Schutgens R, Besley G. Ed. Diagnosis of human peroxisomal disorders p. 23–25. Springer; Reprinted from J Inherit Metab Dis. 1995;18:1 ed. (29 June 2013).

    Google Scholar 

  35. Abbott B, Wood C, Watkins A, Das K, Lau C. Peroxisome proliferator-activated receptors alpha, beta, and gamma mrna and protein expression in human fetal tissues. http://dx.doi.org/10.1155/2010/690907.

  36. Roels F, Pauwels M, Cornelis A, Kerckaert I, Van der Spek P, Goovaerts G, Versieck J, Goldfischer S. Peroxisomes (microbodies) in human liver: cytochemical and quantitative studies of 85 biopsies. J Histochem Cytochem. 1983;31:235.

    Article  CAS  PubMed  Google Scholar 

  37. Eguchi M, Sannes P, Spicer S. Peroxisomes of rat peritoneal macrophages during phagocytosis. Am J Pathol. 1979;95(2):281–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Georgiadi A. Mapping the diverse functions of dietary fatty acids via target gene regulation. Thesis, Wageningen, The Netherlands: Wageningen University; 2012. p. 56, 88. ISBN: 978-94-6173-280-4.

    Google Scholar 

  39. Park S, Park N, Valacchi G, Lim Y. Calorie Restriction with a high-fat diet effectively attenuated inflammatory response and oxidative stress-related markers in obese tissues of the high diet fed rats. http://dx.doi.org/10.1155/2012/984643.

  40. Rakhshandehroo M, Hooiveld G, Müller M, Kersten S. Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human. doi:10.1371/journal.pone.0006796.

    Google Scholar 

  41. Kersten S. Integrated physiology and systems biology of PPARα. doi:10.1016/j.molmet.2014.02.002.

    Google Scholar 

  42. Goodfriend T, Pedersen T, Grekin R, Hammock B, Ball D, Vollmer A. Heparin, lipoproteins, and oxygenated fatty acids in blood: a cautionary note. doi:10.1016/j.plefa.2007.10.012.

    Google Scholar 

  43. Loughran P, Stolz B, Vodovotz Y, Watkins S, Simmons R, Billiar T. Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. www.pnas.org/cgi/doi/10.1073/pnas.0503926102.

  44. Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. doi:10.1016/j.bbadis.2011.12.001.

    Google Scholar 

  45. Girotti A. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39:1529–42.

    CAS  PubMed  Google Scholar 

  46. Luci S, Giemsa B, Hause G, Kluge H, Eder K. Clofibrate treatment in pigs: effects on parameters critical with respect to peroxisome proliferator-induced hepatocarcinogenesis in rodents. BMC Pharmacol. 2007;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schrader M, Fahimi H. Peroxisomes and oxidative stress. doi:10.1016/j.bbamcr.2006.09.006.

    Google Scholar 

  48. Hennig B, Boissonneault G, Chow C, Wang W, Matulionis D. Glauert H. Effect of vitamin E on linoleic acid-mediated induction of peroxisomal enzymes in cultured porcine endothelial cells. (Fig. 4.) J Nutr. 05/1990;120(4):331–7.

    Google Scholar 

  49. Hennig B, Watkins B. Linoleic acid and linolenic acid: effect on permeability properties of cultured endothelial cell monolayers. Am J Clin Nutr. 1989;49(2):301–305.

    Google Scholar 

  50. Diamond I, Sterescu A, Pencharz P, Kim J, Wales P. Changing the paradigm: omegaven for the treatment of liver failure in pediatric short bowel syndrome. J Pediatr Gastroenterol Nutr. 2009;48:209–15.

    Article  CAS  PubMed  Google Scholar 

  51. Wigmore J, et al. The effect of polyunsaturated fatty acids on progress of cachexia in patients with pancreatic cancer. Nutrition. 1996;12:27–30.

    Article  Google Scholar 

  52. Michalik L, Wahli W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest. 2006;116(3):598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ebrahimi M, Sadeghizadeh M, Noori-Daloii M. Expression of inducible nitric oxide synthase gene (Inos) stimulated by hydrogen peroxide in human endothelial cells journal of sciences. Islamic Republic of Iran. 2002;13(1):15–8.

    CAS  Google Scholar 

  54. Pond C. Adipose tissue and the immune system. Prostaglandins Leukot Essent Fatty Acids. 2005;73(1):17–30.

    Article  CAS  PubMed  Google Scholar 

  55. Lodhi I, Wei X, Yin L, Feng C, Adak S, Abou-Ezzi G, Hsu F, Link D, Semenkovich C. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab. 2015;21(1):51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ricote M, Huang J, Welch J, Glass C. The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol. 1999;66(5):733–9.

    CAS  PubMed  Google Scholar 

  57. Ohshima K, Mogi M, Horiuchi M. Role of peroxisome proliferator-activated receptor-γ in vascular inflammation. http://dx.doi.org/10.1155/2012/508416.

  58. Salway J. Metabolism at a glance. 2nd ed. Blackwell Science.

    Google Scholar 

  59. Scholte H. Erasmus MC-University Medical Center, Rotterdam, Holland http://www.chm.bris.ac.uk/motm/carnitine/Carnitine.htm.

  60. Greenberg C, Dilling L, Thompson G, Seargeant L, Haworth J, Phillips S, Chan A, Vallance H, Waters P, Sinclair G, Lillquist Y, Wanders R, Olpin S. The paradox of the carnitine palmitoyltransferase type Ia P479L variant in Canadian Aboriginal populations. Mol Genet Metab. 2009;96(4):201–7.

    Article  CAS  PubMed  Google Scholar 

  61. Dobromylskyj P. Coconuts and cornstarch in the Artic. http://high-fat-nutrition.blogspot.com/2014/11/coconuts-and-cornstarch-in-arctic.html.

  62. Lam T, Carpentier A, Lewis G, van de Werve G, Fantus I, Giacca A. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab. 2003;284(5):E863–73.

    Article  CAS  PubMed  Google Scholar 

  63. Ho K, Mikkelson B, Lewis L, Feldman S, Taylor C. Alaskan Arctic Eskimo: responses to a customary high fat diet. Am J Clinical Nutr. 1972;25:737–45.

    CAS  Google Scholar 

  64. Heinbecker P. Studies on the metabolism of Eskimos. http://www.jbc.org/content/80/2/461.citation.

  65. Corcoran A, Rabinowitch I. A study of the blood lipoids and blood protein in Canadian Eastern Arctic Eskimos. Biochem. 1937;xxxi.

    Google Scholar 

  66. Mandard S, Müller M, Kersten S. Peroxisome proliferator-activated receptor a target genes. CMLS. Cell Mol Life Sci. 2004;61:393–416.

    Article  CAS  PubMed  Google Scholar 

  67. Stafstrom C, Rho J. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012;3:59.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Roy R, Singh S, Pujari S. Dietary role of omega—3 polyunsaturated fatty acid (PUFA): a study with growing chicks, gallus domesticus. Int J Poult Sci. 2008;7(4):360–7.

    Article  CAS  Google Scholar 

  69. Ferré P. The biology of peroxisome proliferator-activated receptors relationship with lipid metabolism and insulin sensitivity. doi:10.2337/diabetes.53.2007.S43.

    Google Scholar 

  70. Iritani N, Ikeda Y. Activation of catalase and other enzymes by corn oil intake. J Nutr. 1982;112:2235–9.

    CAS  PubMed  Google Scholar 

  71. Milder J, Liang L, Patel M. Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis. 2010;40(1):238–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Allen B, Bhatia S, Buatti J, Brandt K, Lindholm K, Button A, Szweda L, Smith B, Spitz D, Fath M. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res. 2013;19(14):3905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reszko A, Kasumov T, David F, Jobbins K, Thomas K, Hoppel C, Brunengraber H, Rosiers C. Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. doi:10.1074/jbc.M400162200.

    Google Scholar 

  74. Bian F, Kasumov T, Thomas K, Jobbins K, David F, Minkler P, Hoppel C, Brunengraber H. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate. J Biol Chem. 2005;280(10):9265–71.

    Article  CAS  PubMed  Google Scholar 

  75. Ebbeling C, Swain J, Feldman H, Wong W, Hachey D, Garcia-Lago E, Ludwig D. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;. doi:10.1001/jama.2012.6607.

    PubMed Central  Google Scholar 

  76. Bemis T, Brychta R, Chen K, Courville A, Crayner E, Goodwin S, Guo J, Howard L, Knuth N, Miller III B, Prado C, Siervo M, Skarulis M, Walter M, Walter P, Yannai L. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. doi:10.1016/j.cmet.2015.07.021.

    Google Scholar 

  77. DeLany J, Windhauser M, Champagne C, Bray G. Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr. 2000;72(4):905–911.

    Google Scholar 

  78. Murata N, Sato N, Takahashi N, Hamazaki Y. Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol. 1982;23(6):1071–9.

    CAS  Google Scholar 

  79. Newman D. Lipids of light- and dark-treated plastids. Ohio J Sci. 1964;64(4):258–263.

    Google Scholar 

  80. Florant G. Lipid metabolism in hibernators the importance of essential fatty acids. Amer. Zool. 1998;38:331–340. J Reprod Immunol. 2008;77(2):161–70.

    Google Scholar 

  81. Hill V, Florant G. The effect of a linseed oil diet on hibernation in yellow-bellied marmots (Marmota flaviventris). Physiol Behav. 2000;68(4):431–7.

    Article  CAS  PubMed  Google Scholar 

  82. Kabine M, Clémencet M, Bride J, El Kebbaj M, Latruffe N, Cherkaoui-Malki M. Changes of peroxisomal fatty acid metabolism during cold acclimatization in hibernating jerboa (Jaculus orientalis). Biochimie. 2003;85(7):707–14.

    Article  CAS  PubMed  Google Scholar 

  83. Chikahisa S, Shimizu N, Shiuchi T, Séi H. Ketone body metabolism and sleep homeostasis in mice. Neuropharmacology. 2014;79:399–404.

    Article  CAS  PubMed  Google Scholar 

  84. Zuo X, Wu Y, Morris J, Stimmel J, Leesnitzer L, Fischer S, Lippman S, Shureiqi I. Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene. 2006;25(8):1225–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Coleman J, Prabhu K, Thompson J, Reddy P, Peters J, Peterson B, Reddy C, Vanden Heuvel J. The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radic Biol Med. 2007;42(8):1155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu J, Wang P, Luo J, Huang Y, He L, Yang H, Li Q, Wu S, Zhelyabovska O, Yang Q. Peroxisome proliferator-activated receptor β/δ activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension. 2011;57(2):223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Coll T, Rodrïguez-Calvo R, Barroso E, Serrano L, Eyre E, Palomer X, Vázquez-Carrera M. Peroxisome proliferator-activated receptor (PPAR) beta/delta: a new potential therapeutic target for the treatment of metabolic syndrome. Curr Mol Pharmacol. 2009;2(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  88. Sprecher D, Massien C, Pearce G, Billin A, Perlstein I, Willson T, Hassall D, Ancellin N, Patterson S, Lobe D, Johnson T. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arterioscler Thromb Vasc Biol. 2007;27(2):359–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Andrew Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brown, R.A. (2016). The Crucial Relevance of ALA and LA as Primary Peroxisomal Beta-Oxidation Substrates, of Oxidised LA as the Primary Endogenous Activator of PPAR Gamma, and Energy Deficit as the Primary Activator of PPAR Alpha. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics