A Novel Dataset for Real-Life Evaluation of Facial Expression Recognition Methodologies

  • Muhammad Hameed Siddiqi
  • Maqbool Ali
  • Muhammad Idris
  • Oresti Banos
  • Sungyoung Lee
  • Hyunseung Choo
Conference paper

DOI: 10.1007/978-3-319-34111-8_12

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9673)
Cite this paper as:
Siddiqi M.H., Ali M., Idris M., Banos O., Lee S., Choo H. (2016) A Novel Dataset for Real-Life Evaluation of Facial Expression Recognition Methodologies. In: Khoury R., Drummond C. (eds) Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science, vol 9673. Springer, Cham

Abstract

One limitation seen among most of the previous methods is that they were evaluated under settings that are far from real-life scenarios. The reason is that the existing facial expression recognition (FER) datasets are mostly pose-based and assume a predefined setup. The expressions in these datasets are recorded using a fixed camera deployment with a constant background and static ambient settings. In a real-life scenario, FER systems are expected to deal with changing ambient conditions, dynamic background, varying camera angles, different face size, and other human-related variations. Accordingly, in this work, three FER datasets are collected over a period of six months, keeping in view the limitations of existing datasets. These datasets are collected from YouTube, real world talk shows, and real world interviews. The most widely used FER methodologies are implemented, and evaluated using these datasets to analyze their performance in real-life situations.

Keywords

Facial expression recognition Feature extraction Feature selection Recognition YouTube Real-world 

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Muhammad Hameed Siddiqi
    • 1
  • Maqbool Ali
    • 2
  • Muhammad Idris
    • 2
  • Oresti Banos
    • 2
  • Sungyoung Lee
    • 2
  • Hyunseung Choo
    • 1
  1. 1.Department of Computer Science and EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Department of Computer EngineeringKyung Hee UniversitySuwonKorea

Personalised recommendations