Skip to main content

Use of Remotely Sensed Climate and Environmental Information for Air Quality and Public Health Applications

  • Chapter
  • First Online:
Earth Science Satellite Applications

Abstract

Earth’s environment has direct and dramatic effects on its inhabitants in the realms of health and air quality. The climate, even in an unaltered state, poses great challenges but also presents great opportunity for the mankind to survive and flourish. Anthropogenic factors lead to even greater stress on the global ecosystem and to mankind, particularly with respect to air quality and the concomitant health issues. While the use of remote sensing technology to address issues is in its infancy, there is tremendous potential for using remote sensing as part of systems that monitor and forecast conditions that directly or indirectly affect health and air quality. This chapter discusses current status and future prospects in this field and presents three case studies showing the great value of remote sensing assets in distinct disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQAST:

Air Quality Applied Sciences Team

AMSR-E:

Advanced Microwave Scanning Radiometer—Earth Observing System

CALIPSO:

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CDC:

Centers for Disease Control and Prevention

CHIRPS:

Climate Hazards Group InfraRed Precipitation with Station

CMAP:

Climate Prediction Center (CPC) Merged Analysis of Precipitation

CMORPH:

CPC MORPHing technique

DoD:

Department of Defense

ENACTS:

Enhancing National Climate Services

EO:

Earth Observation

EPA:

Environmental Protection Agency

EVI:

Enhanced Vegetation Index

GEO-CAPE:

Geostationary Coastal and Air Pollution Events

GHG:

Greenhouse Gasses

GPCP:

Global Precipitation Climatology Project

GIMMS:

Global Inventory Monitoring and Modeling Studies

GPM:

Global Precipitation Measurement

GRACE:

Gravity Recovery and Climate Experiment

GTS:

Global Telecommunication System

HAQ:

Health and Air Quality

HyspIRI:

Hyperspectral Infrared Imager

LST:

Land Surface Temperature

MODIS:

Moderate Resolution Imaging Spectroradiometer

MOPITT:

Measurement of Pollution in the Troposphere

NAAQS:

National Ambient Air Quality Standard

NDVI:

Normalized Difference Vegetation Index

NMS:

National Meteorological Service

NOAA:

National Oceanic and Atmospheric Administration

PACE:

Pre-Aerosol, Clouds, and ocean Ecosystems

PM2.5 :

Particulate Matter smaller than 2.5 microns in diameter

SeaWiFS:

Sea-Viewing Wide Field of View Sensor

SMAP:

Soil Moisture Active/Passive

SMOS:

Soil Moisture and Ocean Salinity

SWOT:

Surface Water and Ocean Topography

TEMPO:

Tropospheric Emissions: Monitoring of Pollution

TRMM:

Tropical Rainfall Measuring Mission

VCAP:

Vectorial CAPacity model

VL:

Visceral Leishmaniasis

VIIRS:

Visible Infrared Imager Radiometer Suite

VOC:

Volatile Organic Compounds

WHO:

World Health Organization

References

  • Agee, J. K. (2002). The fallacy of passive management. Conservation in Practice, 3(1), 18–26. doi:10.1111/j.1526-4629.2002.tb00023.x.

    Article  Google Scholar 

  • Ager, A. A., Vaillant, N. M., & Finney, M. A. (2010). A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management, 259, 1556–1570.

    Article  Google Scholar 

  • Akanda, A. S., & Hossain, F. (2012). The climate-water-health nexus in emerging megacities. EOS Transactions, 93(37), 353–354.

    Article  Google Scholar 

  • Akanda, A. S., Jutla, A. S., & Islam, S. (2009). Dual peak cholera transmission in Bengal Delta: A hydroclimatological explanation. Geophysical Reseach Letters, 36, L19401.

    Article  Google Scholar 

  • Akanda, A. S., Jutla, A. S., Alam, M., de Magny, G. C., Siddique, A. K., Sack. R. B., et al. (2011). Hydroclimatic influences on seasonal and spatial cholera transmission cycles: Implications for Public Health Intervention in Bengal Delta. Water Resources Research, 47, W00H07.

    Google Scholar 

  • Akanda, A. S., Jutla, A. S., Gute, D. M., Evans, T., & Islam, S. (2012). Reinforcing cholera intervention through prediction aided prevention. Bulletin of the World Health Organization, 90, 243–244.

    Article  Google Scholar 

  • Akanda, A. S., Jutla, A. S., Gute, D. M., Sack, B. R., Alam, M., Huq, A., et al. (2013). Population Vulnerability to Biannual Cholera Peaks and associated Macro-scale drivers in the Bengal Delta. American Journal of Tropical Medicine and Hygeine, 89(5), 950–959.

    Google Scholar 

  • Akanda, A. S., Jutla, A. S., & Colwell, R. R. (2014). Global diarrhea action plan needs integrated climate-based surveillance. The Lancet Global Health, 2(2), e69–e70.

    Article  Google Scholar 

  • Anderson, M. K. (2005). Tending the wild: Native American knowledge and the management of California’s natural resources. Berkeley, CA: University of California Press.

    Google Scholar 

  • Aregawi, M., Lynch, M., Bekele, W., Kebede, H., Jima, D., Taffese, H.S., et al. (2014). Measure of trends in malaria cases and deaths at hospitals, and the effect of antimalarial interventions, 2001–2011, Ethiopia. PLoS ONE 9(1), e106359.

    Google Scholar 

  • Arno, S. F., Parsons, D. J., & Keane, R. E. (2000). Mixed-severity fire regimes in the Northern Rocky Mountains: Consequences of fire exclusion and options for the future. Proceedings of the Wilderness Science in a Time of Change Conference. RMRS Proceedings 15 (Vol. 5, pp. 225–232). USDA Forest Service, Rocky Mountain Research.

    Google Scholar 

  • Ashford, R. W., & Thomson, M. (1991). Visceral Leishmaniasis in Sudan. A delayed development disaster. Annals of Tropical Medicine and Parasitology, 85, 571–572.

    Google Scholar 

  • Beaty, R. M., & Taylor, A. H. (2008). Fire history and the structure and dynamics of a mixed conifer forest landscape in the northern Sierra Nevada, Lake Tahoe Basin, CA. Forest Ecology and Management, 255, 707–719.

    Article  Google Scholar 

  • Bertuzzo, E., Azaele, S., et al. (2008). On the space-time evolution of a cholera epidemic. Water Resources Research, 44, W01424.

    Article  Google Scholar 

  • Biswell, H. (1959). Man and fire in ponderosa pine in the Sierra Nevada of California. Sierra Club Bulletin, 44, 44–53.

    Google Scholar 

  • Biswell, H. H. (1989). Prescribed burning in California wildland vegetation management. Berkeley, CA: University of California Press.

    Google Scholar 

  • Boerner, R. E. J., Huang, J., & Hart, S. C. (2008). Fire, thinning, and the carbon economy: Effects of fire and fire surrogate treatments on estimated carbon storage and sequestration rate. Forest Ecology and Management, 255, 3081–3097.

    Article  Google Scholar 

  • Campbell, J. L., Harmon, M. E., & Mitchell, S. R. (2011). Can fuel-reduction treatments really increase forest carbon storage in the western U.S. by reducing future fire emissions? Frontiers in Ecology and the Environment. doi:10.1890/110057.

    Google Scholar 

  • Campbell-Lendrum, D., Manga, L., Bagayoko, M., & Sommerfeld, J. (2015). Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophical Transactions of the Royal Society B, 370, 20130552. doi:10.1098/rstb.2013.0552.

    Article  Google Scholar 

  • CARB (California Air Resources Board), Summer Wildfire PM Exceptional Event Demonstration. (2009). http://www2.epa.gov/air-quality-analysis/exceptional-events-submissions-table#PM10.

  • Cash, B. A., Rodo, X., & Kinter III, J. L (2008). Links between Tropical Pacific SST and cholera incidence in Bangladesh: Role of the Eastern and Central Tropical Pacific. Journal of Climate, 21, 4647–4663.

    Google Scholar 

  • Ceccato, P. (2005). Operational Early Warning System Using SPOT-VGT and TERRA-MODIS to Predict Desert Locust Outbreaks. Proceedings of the 2nd VEGETATION International Users Conference, March 24–26, 2004. Antwerpen. In: F. Veroustraete, E. Bartholome, W. W. Verstraeten, (Eds.), Luxembourg: Luxembourg: Office for Official Publication of the European Communities, ISBN 92-894-9004-7, EUR 21552 EN, 475 p.

    Google Scholar 

  • Ceccato, P., Ghebremeskel, T., Jaiteh, M., Graves, P. M., Levy, M., Ghebreselassie, S., et al. (2007). Malaria stratification, climate and epidemic early warning in Eritrea. American Journal of Tropical Medicine and Hygiene, 77, 61–68.

    Google Scholar 

  • Ceccato, P., Vancutsem, C., & Temimi, M. (2010). Monitoring air and land surface temperatures from remotely sensed data for climate-human health applications. International Geoscience and Remote Sensing Symposium (IGARSS), 178–180.

    Google Scholar 

  • Ceccato, P., Vancutsem, C., Klaver, R., Rowland, J., & Connor, S. J. (2012). A vectorial capacity product to monitor changing malaria transmission potential in epidemic regions of Africa. Journal of Tropical Medicine, 2012, Article ID 595948. doi:10.1155/2012/595948, 6 pp.

    Google Scholar 

  • Climate Action Reserve (CAR). (2012). Climate Action Reserve’s Forest Project Protocol Version 3.3. Retrieved October 29, 2015 from http://www.climateactionreserve.org/how/protocols/forest/dev/version-3-3/.

  • Cockburn, T. A., & Casanos, J. G. (1960). Epidemiology of Endemic Cholera. Public Health Reports, Vol. 75, No. 9.

    Google Scholar 

  • Collins, B. M., Stephens, S. L., Moghaddas, J. J., & Battles, J. (2010). Challenges and approaches in planning fuel treatments across fire-excluded forested landscapes. Journal of Forestry, 108(1), 24–31.

    Google Scholar 

  • Collins, B. M., Everett, R. G., & Stephens, S. L. (2011). Impacts of fire exclusion and managed fire on forest structure in an old growth Sierra Nevada mixed-conifer forest. Ecosphere, 2, art 51.

    Google Scholar 

  • Colwell, R. (1996). Global climate and infectious disease: The cholera paradigm. Science, 274(5295).

    Google Scholar 

  • Colwell, R., & Huq, A. (2001). Marine ecosystems and cholera. Hydrobiologia, 460.

    Google Scholar 

  • DaSilva, J., Garanganga, B., Teveredzi, V., Marx, S. M., Mason, S. J., & Connor, S. J. (2004). Improving epidemic malaria planning, preparedness and response in Southern Africa. Malaria Journal, 3, 37.

    Article  Google Scholar 

  • Delfino, R. J., Brummel, S., Wu, J., Stern, H., Ostro, B., Lipsett, M., et al. (2009). The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, 66, 189–197.

    Google Scholar 

  • Dinku, T., Ceccato, P., & Connor, S. J. (2011). Challenges to satellite rainfall estimation over mountainous and arid parts of East Africa. International Journal of Remote Sensing, 32(21), 5965–5979.

    Article  Google Scholar 

  • Dinku, T., Block, P., Sharoff, J., & Thomson, M. (2014a). Bridging critical gaps in climate services and applications in Africa. Earth Perspectives, 1(15).

    Google Scholar 

  • Dinku, T., Kanemba, A., Platzer, B., & Thomson, M. C. (2014b). Leveraging the climate for improved malaria control in Tanzania. Earthzine. http://www.earthzine.org/2014/02/15/.

  • Dombeck, M. P., Williams, J. E., & Wood, C. A. (2004). Wildfire policy and public lands: Integrating scientific understanding with social concerns across landscapes. Conservation Biology, 18, 883–889.

    Article  Google Scholar 

  • Elnaiem, D. A. (2011). Ecology and control of the sand fly vectors of Leishmania donovani in East Africa, with special emphasis on Phlebotomus orientalis. The Journal of Vector Ecology, 36(s1), S23–S31.

    Article  Google Scholar 

  • Elnaiem, D. A., Hassan, H. K., & Ward, R. D. (1997). Phlebotomine sandflies in a focus of visceral leishmaniasis in a border area of eastern Sudan. Annals of Tropical Medicine and Parasitology, 91(3), 307–318.

    Article  Google Scholar 

  • Elnaiem, D. A., Hassan, H. K., & Ward, R. D. (1999). Associations of Phlebotomus orientalis and other sandflies with vegetation types in eastern Sudan focus of kala-azar. Medical and Veterinary Entomology, 13, 198–203.

    Article  Google Scholar 

  • Emch, M., Feldacker, C., Yunus, M., Streatfield, P. K., DinhThiem, V., Canh do, G., et al. (2008). Local environmental predictors of cholera in Bangladesh and Vietnam. The American Journal of Tropical Medicine and Hygiene, 78(5), 823–832.

    Google Scholar 

  • Fontaine, R. E., Najjar, A. E., & Prince, J. S. (1961). The 1958 malaria epidemic in Ethiopia. American Journal of Tropical Medicine and Hygiene, 10, 795–803.

    Google Scholar 

  • Fulé, P. Z., Crouse, J. E., Heinlein, T. A., Moore, M. M., Covington, W. W., & Verkamp, G. (2003). Mixed severity fire regime in a high-elevation forest: Grand Canyon, Arizona. Landscape Ecology, 18, 465–486.

    Article  Google Scholar 

  • Gebre-Michael, T., Malone, J. B., Balkew, M., Ali, A., Berhe, N., Hailu, A., et al. (2004). Mapping the potential distribution of Phlebotomus martini and P. orientalis (Diptera: Psychodidae), vectors of kala-azar in East Africa by use of geographic information systems. Acta Tropica, 90, 73–86.

    Google Scholar 

  • Germain, R. H., Floyd, D. W., & Stehman, S. V. (2001). Public perceptions of the USDA Forest Service public participation process. Forest Policy and Economics, 3, 113–124.

    Article  Google Scholar 

  • Gerstl, S., Amsalu, R., & Ritmeijer, K. (2006). Accessibility of diagnostic and treatment centres for visceral leishmaniasis in Gedaref State, northern Sudan. Tropical Medicine and International Health, 11(2), 167–175.

    Article  Google Scholar 

  • Gil, A. I., Louis, V. R., Rivera, I. N. G., Lipp, E., Huq, A, Lanata, C.F., et al. (2004). Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environmental Microbiology, 6(7), 699–706.

    Google Scholar 

  • Gonzalez, P., Battles, J. J., Collins, B. M., Robards, T., & Saah, D. S. (2015). Aboveground live carbon stock changes of California wildland ecosystems, 2001–2010. Forest Ecology and Management. doi:10.1016/j.foreco.2015.03.040.

    Google Scholar 

  • Griffith, D. C., Kelly-Hope, L. A., & Miller, M. A. (2006). Review of reported cholera outbreaks worldwide, 1995–2005. The American Journal of Tropical Medicine and Hygiene, 75(5), 973–977.

    Google Scholar 

  • Hashizume, M., Armstrong, B., Hajat, S., Wagatsuma, Y., Faruque, A. S., Hayashi, T., et al. (2008). The Effect of Rainfall on the Prevalence of Cholera in Bangladesh. Epidemiology, 19(1).

    Google Scholar 

  • Hirt, P. W. (1996). A conspiracy of optimism: Management of the national forests since World War Two. Lincoln, Neb: University of Nebraska Press.

    Google Scholar 

  • Hoogstraal, H., & Heyneman, D. (1969). Leishmaniasis in the Sudan Republic. The American Journal of Tropical Medicine and Hygiene, 18(6). International Soil Reference and Information Centre (ISRIC)—World Soil Information, 2013. Soil property maps of Africa at 1 km. www.isric.org.

  • Hossain, F. (2015). Data for all: Using satellite observations for social good. Eos, 96. doi:10.1029/2015EO037319. Retrieved October 14 2015.

  • Huq, A., & Colwell, R. R. (1996). Vibrios in the marine and estuarine environment: Tracking Vibrio cholerae. Ecosystem Health, 13(9).

    Google Scholar 

  • Hurteau, M., & North, M. (2009). Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Frontiers in Ecology and the Environment, 7, 409–414.

    Article  Google Scholar 

  • Hurteau, M., & North, M. (2010). Carbon recovery rates following different wildfire risk mitigation treatments. Forest Ecology and Management, 260, 930–937.

    Article  Google Scholar 

  • Hurteau, M. D., Koch, G. W., & Hungate, B. A. (2008). Carbon protection and fire risk reduction: Toward a full accounting of forest carbon offsets. Frontiers in Ecology and the Environment, 6(9), 493–498. doi:10.1890/070187.

    Article  Google Scholar 

  • Jones, G., Loeffler, D., Calkin, D., & Chung, W. (2010). Forest treatment residues for thermal energy compared with disposal by onsite burning: Emissions and energy return. Biomass Bioenergy, 34, 737–746.

    Article  Google Scholar 

  • Jutla, A. S., Akanda, A. S., & Islam, S. (2012). Satellite remote sensing of space-time plankton variability in the Bay of Bengal: Connections to cholera outbreaks. Remote Sensing of Environment, 123, 196–206.

    Article  Google Scholar 

  • Jutla, A. S., Akanda, A. S., & Islam, S. (2013). A framework for predicting endemic cholera using satellite derived environmental determinants. Environ Modeling and Software, 47, 148–158.

    Article  Google Scholar 

  • Jutla, A., Unnikrishnan, A., Akanda, A. S., Huq, H., & Colwell, R. R. (2015a). Predictive time series analysis linking Bengal cholera with terrestrial water storage measured from GRACE sensors. American Journal of Tropical Medicine and Hygiene (Accepted).

    Google Scholar 

  • Jutla, A., Aldaach, H., Billian, H., Akanda, A. S., Huq, A., & Colwell, R. R. (2015b). Satellite based assessment of hydroclimatic conditions related to cholera in Zimbabwe. PLoS-ONE. doi:10.1371/journal.pone.0137828.

    Google Scholar 

  • Kilgore, B. M., & Taylor, D. (1979). Fire history of a sequoia-mixed conifer forest. Ecology, 60, 129–142.

    Article  Google Scholar 

  • Koelle, K., Rodo, X., Pascual, M., Yunus, M., & Mostafa, G. (2005). Refractory periods and climate forcing in cholera dynamics. Nature, 436, 4.

    Article  Google Scholar 

  • Lee, C., Erickson, P., Lazarus, M., & Smith, G. (2010). Greenhouse gas and air pollutant emissions of alternatives for woody biomass residues. Seattle, WA: Stockholm Environmental Institute. http://data.orcaa.org/reports/all-reports-entries/woody-biomass-emissions-study/.

  • Lobitz, B., Beck, L. Huq, A. Wood, B. Faruque A., & Colwell, R. (2000). Climate and infectious disease: Use of remote sensing for detection of vibrio cholerae. PNAS, 97(4).

    Google Scholar 

  • Longini, M., Zaman, K., Yunus, M., & Siddique, A. K. (2002). Epidemic and Endemic Cholera Trends over a 33-Year Period in Bangladesh. J. Infec. Dis., 186, 246–251.

    Article  Google Scholar 

  • McDonald, K. C., Chapman, B., Podest, E., Schroeder, R., Flores, S., Willacy, K., et al. (2011). Monitoring inundated wetlands ecosystems with satellite microwave remote sensing in support of earth system science research. Conference Paper, 34th International Symposium on Remote Sensing of Environment—The GEOSS Era: Towards Operational Environmental Monitoring, 4p.

    Google Scholar 

  • MDEQ (Montana Department of Environmental Quality), Exceptional Events Demonstration for PM10 and PM2.5 Data for 2007 Wildfires (2007). http://www2.epa.gov/sites/production/files/2015-05/documents/mt_deq_demonstration_121407.pdf.

  • Millar, C. I., & Stephenson, N. L. (2015). Temperate forest health in an era of emerging mega disturbance. Science, 349(6250), 823–826.

    Article  Google Scholar 

  • Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17(8), 2145–2151. doi:10.1890/06-1715.1.

    Article  Google Scholar 

  • Miller, J. D., Safford, H. D., Crimmins, M., & Thode, A. E. (2009). Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems, 12, 16–32.

    Article  Google Scholar 

  • Moghaddas, J. J., & Craggs, L. (2007). A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest. International Journal of Wildland Fire, 16(6), 673–678. doi:10.1071/WF06066.

    Google Scholar 

  • Moghaddas, J. J., Collins, B. M., Menning, K., Moghaddas, E. E. Y., & Stephens, S. L. (2010). Fuel treatment effects on modeled landscape-level fire behavior in the northern Sierra Nevada. Canadian Journal of Forest Research, 40, 1751–1765.

    Article  Google Scholar 

  • National Fire Interagency Fire Center (NIFC). (2015). 1997–2014 large fires. Retrieved 10 October, 2015 from https://www.nifc.gov/fireInfo/fireInfo_stats_lgFires.html.

  • National Research Council (NRC). (2007). Earth science and Applications from space: National imperatives for the next decade and beyond. Washington, DC: The National Academies Press. doi:10.17226/11820.

  • North, M. P., & Hurteau, M. D. (2011). High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest. Forest Ecology and Management, 261, 1115–1120.

    Article  Google Scholar 

  • North, M. P., Stine, P., O’Hara, K., Zielinski, W., & Stephens, S. (2009). An ecosystems management strategy for Sierra mixed-conifer forests. PSW GTR-220 with addendum. Albany, CA, USA: USDA Forest Service, Pacific Southwest Research Station.

    Google Scholar 

  • North, M. P., Stephens, S. L., Collins, B. M., Agee, J. K., Aplet, G., Franklin, J. F., et al. (2015). Reform forest fire management. Science, 349(6254), 1280–1281.

    Google Scholar 

  • Pacala, S., Birdsey, R. A., Bridgham, S. D., Conant, R. T., Davis, K., Hales, B., et al. (2007). The North American carbon budget past and present. In: A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland (Eds.), The First State of the Carbon Cycle Report (SOCCR): The North American Carbon budget and implications for the global carbon cycle (Vol. 29–36, pp. 167–170). Asheville, NC: National Oceanic and Atmospheric Administration, National Climatic Data Center.

    Google Scholar 

  • Pascual, M., Bouma, M., & Dobson, A. (2002). Cholera and climate: Revisiting the quantitative evidence. Microbes and Infection, 4(2).

    Google Scholar 

  • Pekel, J. F., Ceccato, P., Vancutsem, C., Cressman, K., Vanbogaert, E., & Defourny, P. (2011). Development and application of multi-temporal colorimetric transformation to monitor vegetation in the Desert Locust Habitat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 318–326.

    Article  Google Scholar 

  • Perry, D. A., Hessburg, P. F., Skinner, C. N., Spies, T. A., Stephens, S. L., Taylor, A. H., et al. (2011). The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. Forest Ecology and Management, 262, 703–717.

    Google Scholar 

  • Rajesh, K., & Sanjay, K. 2013. Change in global climate and Prevalence of Visceral Leishmaniasis. International Journal of Scientific and Research Publications, 3(1).

    Google Scholar 

  • Randerson, J., Liu, H., Flanner, M. Chambers, S., Jin, Y., Hess, P., et al. (2006). The impact of boreal forest fire on climate warming. Science, 314, 1130–1132.

    Google Scholar 

  • Reinhardt, E., & Holsinger, L. (2010). Effects of fuel treatments on carbon-disturbance relationships in forests of the northern Rocky Mountains. Forest Ecology and Management, 259, 1427–1435.

    Article  Google Scholar 

  • Reinhardt, E. D., Keane, R. E., Calkin, D. E., & Cohen, J. D. (2008). Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. Forest Ecology and Management, 256(12), 1997–2006. doi:10.1016/j.foreco.2008.09.016.

    Google Scholar 

  • Roccaforte, J. P., Fulé, P. Z., Chancellor, W. W., & Laughlin, D. C. (2012). Woody debris and tree regeneration dynamics following severe wildfires in Arizona ponderosa pine forests. Canadian Journal of Forest Research, 42, 593–604.

    Article  Google Scholar 

  • Saah, D., Robards, T., Moody, T., O’Neil-Dune, J., Moritz, M., Hurteau, M., et al. (2012). Developing an Analytical Framework for Quantifying Greenhouse Gas Emission Reductions from Forest Fuel Treatment Projects in Placer County, California. Prepared for: United States Forest Service: Pacific Southwest Research Station, 130p.

    Google Scholar 

  • Saah, D., Schmidt, D., Roller, G., Moody, T. J., Moghaddas, J. J., & Freed, T. (2015). Carbon storage and mass balances: Characteristics of forest carbon and the relationship between fire severity and emissions in the Sierra Nevada Mountains, California, USA. Prepared for: California Energy Commission CEC-600-10-006, 95p.

    Google Scholar 

  • Safford, H. D., Schmidt, D. A., & Carlson, C. H. (2009). Effects of fuel treatments on fire severity in an area of wildland–urban interface, Angora Fire, Lake Tahoe Basin, California. Forest Ecology and Management, 258, 773–787. doi:10.1016/j.foreco.2009.05.024.

    Article  Google Scholar 

  • Salomon, O. D., Quintana, M. G., Mastrangelo, A. V., & Fernandez, M. S. (2012). Leishmaniasis and climate change—case study: Argentina. Journal of Tropical Medicine. doi:10.1155/2012/601242.

    Google Scholar 

  • Savage, M., & Mast, N. J. (2005). How resilient are southwestern ponderosa pine forests after crown fires? Canadian Journal of Forest Research, 35, 967–977.

    Article  Google Scholar 

  • Schroeder, R. M., Rawlins, A., McDonald, K. C., Podest, E., Zimmermann, R., & Kueppers, M. (2010). Satellite microwave remote sensing of North Eurasian inundation dynamics: Development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data. Environmental Research Letters, special issue on Northern Hemisphere high latitude climate and environmental change, 5, 015003 (7 pp). doi:10.1088/1748-9326/5/1/015003.

    Google Scholar 

  • Schwartz, B. S., Harris, J. B., Khan, A. I., Larocque, R. C., Sack, D. A., Malek, M. A., et al. (2006). Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, 2004. The American Journal of Tropical Medicine and Hygiene, 74(6).

    Google Scholar 

  • Schweizer, D., & Cisneros, R. (2014). Wildland fire management and air quality in the southern Sierra Nevada: Using the Lion Fire as a case study with a multi-year perspective on PM 2.5 impacts and fire policy. Journal of Environmental Management, 144, 265–278.

    Article  Google Scholar 

  • Seaman, J., Mercer, A. J., & Sondorp, E. (1996). The epidemic of visceral leishmaniasis in western Upper Nile, southern Sudan: course and impact from 1984 to 1994. International Journal of Epidemiology, 25(4), 862–871.

    Article  Google Scholar 

  • Sedjo, R. A., & Marland, G. (2003). Inter-trading permanent emissions credits and rented temporary carbon emissions offsets: Some issues and alternatives. Climate Policy, 3, 435–444.

    Article  Google Scholar 

  • SMAQMD (Sacramento Metropolitan Air Quality Management District). (2011). Exceptional Events Demonstration for 1-Hour Ozone Exceedance in the Sacramento Regional Nonattainment Area due to 2008 Wildfires.

    Google Scholar 

  • Springsteen, B., Christofk, T., Eubanks, S., Mason, T., Clavin, C., & Storey, B. (2011). Emission reductions from woody biomass waste for energy as an alternative to open burning. Journal of the Air and Waste Management Association, 61, 63–68.

    Article  Google Scholar 

  • Springsteen, B., Christofk, T., York, R. A., Mason, T., Baker, S., Lincoln, E., et al. (2015). Forest biomass diversion in the Sierra Nevada: Energy, economics and emissions. California Agriculture, 69(3), 142–149.

    Google Scholar 

  • State of California. (2006). Assembly Bill 32: The California Global Warming Solutions Act of 2006. Nunez, F. September 27, 2006.

    Google Scholar 

  • Stephens, S. L. (2000). Mixed conifer and upper montane forest structure and uses in 1899 from the central and northern Sierra Nevada, CA. Madrono, 47, 43–52.

    Google Scholar 

  • Stephens, S. L., & Moghaddas, J. J. (2005). Silvicultural and reserve impacts on potential fire behavior and forest conservation: Twenty-five years of experience from Sierra Nevada mixed conifer forests. Biological Conservation, 125(3), 369–379. doi:10.1016/j.biocon.2005.04.007.

    Google Scholar 

  • Stephens, S. L., & Ruth, L. W. (2005). Federal forest-fire policy in the United States. Ecological Applications, 15(2), 532–542. doi:10.1890/04-0545.

    Google Scholar 

  • Stephens, S. L., Martin, R. E., & Clinton, N. D. (2007). Prehistoric fire area and emissions from California’s forests, woodlands, shrublands and grasslands. Forest Ecology and Management, 251, 205–216.

    Article  Google Scholar 

  • Stephens, S. L., Moghaddas, J., Hartsough, B., Moghaddas, E., & Clinton, N. E. (2009a). Fuel treatment effects on stand level carbon pools, treatment related emissions, and fire risk in a Sierran mixed conifer forest. Canadian Journal of Forest Research, 39, 1538–1547.

    Google Scholar 

  • Stephens, S. L., Moghaddas, J., Edminster, C., Fiedler, C., Hasse, S., Harrington, M., et al. (2009b). Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecological Applications, 19, 305–320.

    Google Scholar 

  • Stephens, S. L., Moghaddas, J. J., Edminster, C., Fiedler, C. E., Haase, S., Harrington, M., et al. (2009c). Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecological Applications, 19(2), 305–320. doi:10.1890/07-1755.1. PMID:19323192.

    Google Scholar 

  • Stephens, S. L., McIver, J. D., Boerner, R. E. J., Fettig, C. J., Fontaine, J. B., Hartsough, B. R., et al. (2012a). Effects of forest fuel reduction treatments in the United States. BioScience, 62, 549–560.

    Google Scholar 

  • Stephens, S. L., Boerner, R. E. J., Moghaddas, J. J., Moghaddas, E. E. Y., Collins, B. M., Dow, C. B., et al. (2012b). Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona. Ecosphere, 3(5), 38. http://dx.doi.org/10.1890/ES11-00289.1.

    Google Scholar 

  • Sweeney, A., Kruczkiewicz, A., Reid, C., Seaman, J., Abubakar, A., Ritmeijer, K., et al. (2014). Utilizing NASA Earth observations to explore the relationship between environmental factors and Visceral Leishmaniasis in the Northern States of the Republic of South Sudan. Earthzine IEEE.

    Google Scholar 

  • Thomson, M. C., Elnaiem, D. A., Ashford, R. W., & Connor, S. J. (1999). Towards a kala azar risk map for Sudan: Mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables. Tropical Medicine and International Health, 4(2), 105–113.

    Article  Google Scholar 

  • Urbanski, S. (2014). Wildland fire emissions, carbon, and climate: Emission factors. Forest Ecology and Management, 317, 51–60.

    Article  Google Scholar 

  • US Forest Service (USFS). (2004). Sierra Nevada Forest Plan Amendment (SNFPA) Final Supplemental Environmental Impact Statement (FEIS) and Record of Decision (ROD). January 2004.

    Google Scholar 

  • US Forest Service (USFS). (2015). Managing Wildfires. http://www.fs.fed.us/managing-land/fire.

  • Uz, B. M., & Yoder, J. A. (2004). High frequency and mesoscale variability in SeaWiFS chlorophyll imagery and its relation to other remotely sensed oceanographic variables. Deep Sea Research II, 51(10–11), 1001–1017. doi:10.1016/j.dsr2.2004.03.003.

    Article  Google Scholar 

  • Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS Land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465.

    Article  Google Scholar 

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313(5789), 940–943. doi:10.1126/science.1128834. PMID:16825536.

    Google Scholar 

  • Westerling, A., Brown, T., Schoennagel, T. Swetnam, T., Turner, M., & Veblen, T. (2014). Briefing: Climate and wildfire in western U.S. forests. In: V. A. Sample; R. P. Bixler (Eds.), Forest conservation and management in the Anthropocene: Conference proceedings. Proceedings. RMRS-P-71. Fort Collins, CO: US Department of Agriculture, Forest Service. Rocky Mountain Research Station. pp. 81–102.

    Google Scholar 

  • WHO/UNICEF. (2009). Diarrhea: Why children are still dying and what can be done, Geneva, Switzerland.

    Google Scholar 

  • WHO/UNICEF. (2013). Ending Preventable Child Deaths from Pneumonia and Diarrhea by 2025. The Integrated Global Action Plan for Pneumonia and Diarrhea (GAPPD). Retrieved from www.unicef.org/media/files/Final_GAPPD_main_Report-_EN-8_April_2013.pdf.

  • WHO/UNICEF. (2014). Neglected Tropical Diseases: The 17 neglected tropical diseases. Retrieved from http://www.who.int/neglected_diseases/diseases/en/.

  • Wiedinmyer, C., & Neff, J. C. (2007). Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance and Management, 2(1), 1–12.

    Article  Google Scholar 

  • Wildland Fire Leadership Council. (2011). A National Cohesive Wildland Fire Strategy. http://www.forestsandrangelands.gov/strategy/documents/reports/1_CohesiveStrategy03172011.pdf. Accessed 10/29/2015.

  • Yeshiwondim, A. K., Gopal, S., Hailemariam, A. T., Dengela, D. O., & Patel, H. P. (2009). Spatial analysis of malaria incidence at the village level in areas with unstable transmission in Ethiopia. International Journal of Health Geographics, 8, 5. doi:10.1186/1476-072X-8-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Crosson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crosson, W. et al. (2016). Use of Remotely Sensed Climate and Environmental Information for Air Quality and Public Health Applications. In: Hossain, F. (eds) Earth Science Satellite Applications. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-33438-7_7

Download citation

Publish with us

Policies and ethics