Skip to main content

A Hybridisation of Runner-Based and Seed-Based Plant Propagation Algorithms

  • Chapter
  • First Online:
Nature-Inspired Computation in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 637))

Abstract

In this chapter we introduce a hybrid plant propagation algorithm which combines the standard PPA which uses runners as a means for search and SbPPA which uses seeds as a means for search. Runners are more suited for exploitation while seeds, when propagated by animals and birds, are more suited for exploration. Combining the two is a natural development to design an effective global optimisation algorithm. PPA and SbPPA will be recalled. The hybrid algorithm is then presented and comparative computational results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbol “– ” denotes an empty cell.

References

  1. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences (2010)

    Google Scholar 

  2. Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 23(4), 1001–1014 (2012)

    Article  Google Scholar 

  3. Ang, A.H., Tang, W.H.: Probability concepts in engineering. Planning 1(4), 1–3 (2004)

    Google Scholar 

  4. Arora, J.: Introduction to optimum design. Academic Press (2004)

    Google Scholar 

  5. Belegundu, A.D., Arora, J.: A study of mathematical programming methods for structural optimization. Part I: Theory. Int. J. Numer. Methods Eng. 21(9), 1583–1599 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cagnina, L.C., Esquivel, S.C., Coello, C.A.C.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica (Slovenia) 32(3), 319–326 (2008)

    MATH  Google Scholar 

  7. Cooper, R.B.: Introduction to queueing theory (1972)

    Google Scholar 

  8. Cuevas, E., Cienfuegos, M.: A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Syst. Appl. Int. J. 41(2), 412–425 (2014)

    Article  Google Scholar 

  9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Micro machine and human science, 1995. MHS’95., Proceedings of the Sixth International Symposium on micro machine and human science, pp. 39–43. IEEE (1995)

    Google Scholar 

  10. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23), 2325–2336 (2011)

    Article  Google Scholar 

  11. Golinski, J.: An adaptive optimization system applied to machine synthesis. Mech. Mach. Theory 8(4), 419–436 (1974)

    Article  Google Scholar 

  12. He, Q., Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput. 186(2), 1407–1422 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Hong-Yuan, W., Xiu-Jie, D., Qi-Cai, C., Fu-Hua, C.: An improved isomap for visualization and classification of multiple manifolds. In: Lee, M., Hirose, A., Hou, Z.G., Kil, R. (eds.) Neural Information Processing, Lecture Notes in Computer Science, vol. 8227, pp. 1–12. Springer, Berlin Heidelberg (2013). doi:10.1007/978-3-642-42042-9_1. http://dx.doi.org/10.1007/978-3-642-42042-9_1

    Google Scholar 

  14. Hooke, R., Jeeves, F.: Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8 (1961)

    Google Scholar 

  15. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06, Erciyes Univ. Press, Erciyes (2005)

    Google Scholar 

  16. Karaboga, D., Akay, B.: A modified artificial bee colony (abc) algorithm for constrained optimization problems. Appl. Soft Comput. 11(3), 3021–3031 (2011)

    Article  Google Scholar 

  17. Kıran, M.S., Gündüz, M.: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl. Soft Comput. 13(4), 2188–2203 (2013)

    Article  Google Scholar 

  18. Lawrence, J.A., Pasternack, B.A.: Applied management science. Wiley New York (2002)

    Google Scholar 

  19. Liang, J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello, C.C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. J. Appl. Mech. 41 (2006)

    Google Scholar 

  20. Rahnamayan, S., Tizhoosh, H., Salama, M.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

    Article  Google Scholar 

  21. Salhi, A., Fraga, E.: Nature-inspired optimisation approaches and the new plant propagation algorithm. In: Proceedings of the The International Conference on Numerical Analysis and Optimization (ICeMATH ’11), Yogyakarta, Indonesia pp. K2-1–K2-8 (2011)

    Google Scholar 

  22. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Nanyang Technological University, Singapore, Tech. Rep 2005005 (2005)

    Google Scholar 

  23. Sulaiman, M., Salhi, A.: The 5th international conference on metaheuristics and nature inspired computing, Morocco. http://meta2014.sciencesconf.org/40158 (2014)

  24. Sulaiman, M., Salhi, A.: A seed-based plant propagation algorithm: the feeding station model. Sci. World J. (2015)

    Google Scholar 

  25. Sulaiman, M., Salhi, A., Selamoglu, B.I., Kirikchi, O.B.: A plant propagation algorithm for constrained engineering optimisation problems. Math. Probl. Eng. 627416, 10 pp. (2014) doi:10.1155/2014/627416

    Google Scholar 

  26. Yang, X.S.: Nature-inspired Metaheuristic Algorithms. Luniver Press (2011)

    Google Scholar 

  27. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sulaiman .

Editor information

Editors and Affiliations

Appendices

Appendix

Constrained Global Optimization Problems

1.1 CP1

$$\begin{aligned} \begin{array}{ll} \mathrm{Min} &{} \quad f(x)=5{\sum }_{d=1}^{4}x_d-5{\sum }_{d=1}^{4}x_d^2-{\sum }_{d=5}^{13}x_d, \\ {\text {subject to}} &{}g_1(x)=2x_1+2x_2+x_{10}+x_{11}-10\le 0,\\ &{}\quad g_2(x)=2x_1+2x_3+x_{10}+x_{12}-10\le 0,\\ &{}\quad g_3(x)=2x_2+2x_3+x_{11}+x_{12}-10\le 0,\\ &{}\quad g_4(x)=-8x_1+x_{10}\le 0,\\ &{}\quad g_5(x)=-8x_2+x_{11}\le 0,\\ &{}\quad g_6(x)=-8x_3+x_{12}\le 0,\\ &{}\quad g_7(x)=-2x_4-x_5+x_{10}\le 0,\\ &{}\quad g_8(x)=-2x_6-x_7+x_{11}\le 0,\\ &{}\quad g_9(x)=-2x_8-x_9+x_{12}\le 0, \end{array} \end{aligned}$$

where bounds are \(0 \le x_i \le 1 (i = 1, \ldots , 9, 13), 0 \le x_i \le 100 (i= 10, 11, 12)\). The global optimum is at \(x^* = (1, 1, 1, 1, 1, 1, 1, 1, 1, , 3, 3, 3, 1), f(x^*)= -15\).

1.2 CP2

$$\begin{aligned} \begin{array}{ll} \mathrm{Min} &{}\quad f(x)=5.3578547x_2 +0.8356891x_1x_5+ 37.293239x_1 - 40792.141,\\ {\text {subject to}}&{} g_1(x)=85.334407+0.0056858x_2x_5+0.0006262x_1x_4-0.0022053x_3x_5-92\le 0,\\ &{}\quad g_2(x)=-85.334407-0.0056858x_2x_5-0.0006262x_1x_4+0.0022053x_3x_5\le 0,\\ &{}\quad g_3(x)=80.51249+0.0071317x2x5+0.0029955x1x2-0.0021813x_2-110\le 0,\\ &{}\quad g_4(x)=-80.51249-0.0071317x_2x_5+0.0029955x_1x_2-0.0021813x_2+90\le 0,\\ &{}\quad g_5(x)=9.300961-0.0047026x_3x_5-0.0012547x_1x_3-0.0019085x_3x_4-25\le 0,\\ &{}\quad g_6(x)=-9.300961-0.0047026x_3x_5-0.0012547x_1x_3-0.0019085x_3x_4+20\le 0, \end{array} \end{aligned}$$

where \(78 \le x_1\le 102\), \(33 \le x_2 \le 45\), \(27 \le x_i\le 45\) \((i = 3, 4, 5)\). The optimum solution is \(x^* = (78, 33, 29.995256025682, 45, 36.775812905788)\), where \(f(x^*)= - 30665.539\). Constraints \(g_1\) and \(g_6\) are active.

1.3 CP3

$$\begin{aligned} \begin{array}{ll} \mathrm{Min} &{}\quad f(x)=(x_1-10)^3+(x_2-20)^3,\\ \text {subject to }&{} g_1(x)=-(x_1-5)^2-(x_2 -5)^2+100 \le 0,\\ &{}\quad g_2(x)=(x_1-6)^2 +(x^2-5)^2-82.81 \le 0, \end{array} \end{aligned}$$

where \(13 \le x_1 \le 100 \) and \(0 \le x_2 \le 100\). The optimum solution is \(x^* = (14.095, 0.84296)\) where \(f(x^*)= -6961.81388\). Both constraints are active.

1.4 CP4

$$\begin{aligned} \begin{array}{ll} \mathrm{Min} &{} f(x)=x_1^2+x_2^2+x_1x_2-14x_1-16x_2+(x_3-10)^2+ 4(x_4 - 5)^2 + (x_5 - 3)^2 \\ &{}\qquad +2(x_6 -1)^2+ 5x_7^2 + 7(x_8 - 11)^2+ 2(x_9 - 10)^2 + (x_{10}-7)^2 + 45,\\ {\text {subject to}} &{} g_1(x)=-105+4x_1+5x_2-3x_7+9x_8 \le 0,\\ &{}\quad g_2(x)=10x_1 - 8x_2 - 17x_7 + 2x_8 \le 0,\\ &{}\quad g_3(x)=-8x_1 + 2x_2 + 5x_9 - 2x_{10} - 12 \le 0,\\ &{}\quad g_4(x)=3(x_1 - 2)^2 + 4(x_2 - 3)^2 + 2x_3^2 - 7x_4 - 120 \le 0,\\ &{}\quad g_5(x)=5x_1^2 + 8x_2 + (x_3 - 6)^2 - 2x^4 - 40 \le 0,\\ &{}\quad g_6(x)=x_1^2 + 2(x_2 - 2)^2 - 2x_1x_2 + 14x_5 - 6x_6 \le 0,\\ &{}\quad g_7(x)=0.5(x_1 - 8)^2 + 2(x_2 - 4)^2 + 3x_5^2 - x_6 - 30 \le 0,\\ &{}\quad g_8(x)=-3x_1 + 6x_2 + 12(x_9 - 8)^2 - 7x_{10} \le 0,\\ \end{array} \end{aligned}$$

where \(-10 \le x_i \le 10\) \((i = 1,\ldots , 10)\). The global optimum is \(x^* = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927)\), where \(f(x^*) = 24.3062091\). Constraints \(g_1, g_2, g_3, g_4, g_5\) and \(g_6\) are active.

1.5 CP5

$$\begin{aligned} \begin{array}{ll} \mathrm{Min}&{}f(x)=x_1^2 + (x_2 - 1)^2\\ {\text {subject to}}&{}g_1(x)=x_2 - x_1^2=0, \end{array} \end{aligned}$$

where \(1 \le x_1 \le 1\), \(1 \le x_2 \le 1\). The optimum solution is \(x^*= (\pm 1/\sqrt{(2)}, 1/2)\),

where \(f(x^*) = 0.7499\).

1.6 Welded Beam Design Optimisation

The welded beam design is a standard test problem for constrained design optimisation, [6, 27]. There are four design variables: the width w and length L of the welded area, the depth d and thickness h of the main beam. The objective is to minimise the overall fabrication cost, under the appropriate constraints of shear stress \(\tau \), bending stress \(\sigma \), buckling load P and maximum end deflection \(\delta \). The optimization model is summarized as follows, where \(x^T=(w,L,d,h).\)

$$\begin{aligned} Minimise\quad f(x) = 1.10471w^2L + 0.04811dh(14.0 + L), \end{aligned}$$
(11)

subject to

$$\begin{aligned} \begin{aligned}&g_{1}(x) = w-h \le 0, \\&g_{2}(x) = \delta (x)-0.25 \le 0, \\&g_{3}(x) = \tau (x)-13,600 \le 0, \\&g_{4}(x) = \sigma (x)-30,000\le 0, \\&g_{5}(x) = 1.10471w^2 + 0.04811dh(14.0 + L)-5.0 \le 0, \\&g_{6}(x) = 0.125-w\le 0, \\&g_{7}(x) = 6000-P(x) \le 0,\\ \end{aligned} \end{aligned}$$
(12)

where

$$\begin{aligned} \begin{aligned}&\sigma (x) =\frac{504,000}{hd^2},\\&D = \frac{1}{2}\sqrt{L^2+(w+d)^2},\\&\delta =\frac{65,856}{30,000hd^3},\\&\alpha = \frac{6000}{\sqrt{2}wL},\\&P =0.61423 \times 10^6 \frac{dh^3}{6}\left( 1-\frac{\root d \of {\frac{30}{48}}}{28}\right) .\\ \end{aligned} \begin{aligned}&Q =6000\left( 14+\frac{L}{2}\right) ,\\&J = \sqrt{2}w L \left( \frac{L^2}{6}+\frac{(w+d)^2}{2}\right) ,\\&\beta = \frac{QD}{J},\\&\tau (x) =\sqrt{\alpha ^2+\frac{\alpha \beta L}{D}+\beta ^2},\\ \end{aligned} \end{aligned}$$
(13)

The simple limit or bounds are \(0.1 \le L,d \le 10\) and \(0.1 \le w,h \le 2.0.\)

1.7 Spring Design Optimisation

The main objective of this problem, [4, 5] is to minimize the weight of a tension/compression string, subject to constraints of minimum deflection, shear stress, surge frequency, and limits on outside diameter and on design variables. There are three design variables: the wire diameter \(x_1\), the mean coil diameter \(x_2\), and the number of active coils \(x_3\), [6]. The mathematical formulation of this problem, where \(x^T=(x_1,x_2,x_3)\), is as follows.

$$\begin{aligned} Minimise\quad f(x)= (x_3+2)x_2x_1^2, \end{aligned}$$
(14)

subject to

$$\begin{aligned} \begin{aligned}&g_{1}(x) = 1-\frac{x_2^3x_3}{7,178x_1^4}\le 0, \\&g_{2}(x) = \frac{4x_2^2-x_1x_2}{12,566(x_2x_1^3)-x_1^4}+\frac{1}{5,108x_1^2}-1 \le 0, \\&g_{3}(x) = 1-\frac{140.45x_1}{x_2^2x_3} \le 0, \\&g_{4}(x) = \frac{x_2+x_1}{1.5}-1\le 0, \\ \end{aligned} \end{aligned}$$
(15)

The simple limits on the design variables are \(0.05\le x_1\le 2.0 \), \(0.25 \le x_2 \le 1.3\) and \(2.0\le x_3\le 15.0.\)

1.8 Speed Reducer Design Optimization

The problem of designing speed reducer, [11], is a standard test problem, it consists of the design variables as: face width \(x_1\), module of teeth \(x_2\), number of teeth on pinion \(x_3\), length of the first shaft between bearings \(x_4\), length of the second shaft between bearings \(x_5\), diameter of the first shaft \(x_6\), and diameter of the first shaft \(x_7\) (all variables continuous except \(x_3\) that is integer). The weight of the speed reducer is to be minimized subject to constraints on bending stress of the gear teeth, surface stress, transverse deflections of the shafts and stresses in the shaft, [6]. The mathematical formulation of the problem, where \(x^T=(x_1,x_2,x_3,x_4,x_5,x_6,x_7)\), is as follows.

$$\begin{aligned} Minimise \quad f(x) =&\,0.7854x_1x_2^2(3.3333x_3^2 + 14.9334x_{3}43.0934)\nonumber \\&-1.508x_1(x_6^2 + x_7^3 ) + 7.4777(x_6^3 + x_7^3 )+ 0.7854(x_4x_6^2 + x_5x_7^2 ), \end{aligned}$$
(16)

subject to

$$\begin{aligned} \begin{aligned}&g_{1}(x) = \frac{27}{x_1x_2^2x_3}-1\le 0, \\&g_{2}(x) = \frac{397.5}{x_1x_2^2x_3^2}-1 \le 0, \\&g_{3}(x) = \frac{1.93x_4^3}{x_2x_3x_6^4}-1 \le 0, \\&g_{4}(x) = \frac{1.93x_5^3}{x_2x_3x_7^4}-1\le 0, \\&g_{5}(x) = \frac{1.0}{110x_6^3}\sqrt{\left( \frac{745.0x_4}{x_2x_3}\right) ^2+16.9\times 10^6}-1 \le 0, \\&g_{6}(x) = \frac{1.0}{85x_7^3}\sqrt{\left( \frac{745.0x_5}{x_2x_3}\right) ^2+157.5\times 10^6}-1 \le 0, \\&g_{7}(x) = \frac{x_2x_3}{40}-1 \le 0,\\&g_{8}(x) = \frac{5x_2}{x_1}-1\le 0, \\&g_{9}(x) = \frac{x_1}{12x_2}-1 \le 0, \\&g_{10}(x) = \frac{1.5x_6+1.9}{x_4}-1\le 0, \\&g_{11}(x) = \frac{1.1x_7+1.9}{x_5}-1 \le 0,\\ \end{aligned} \end{aligned}$$
(17)

The simple limits on the design variables are \(2.6\le x_1\le 3.6 \), \(0.7 \le x_2 \le 0.8\), \(17\le x_3\le 28\), \(7.3\le x_4\le 8.3 \), \(7.8 \le x_5 \le 8.3\), \(2.9\le x_6\le 3.9\) and \(5.0\le x_7\le 5.5\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sulaiman, M., Salhi, A. (2016). A Hybridisation of Runner-Based and Seed-Based Plant Propagation Algorithms. In: Yang, XS. (eds) Nature-Inspired Computation in Engineering. Studies in Computational Intelligence, vol 637. Springer, Cham. https://doi.org/10.1007/978-3-319-30235-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30235-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30233-1

  • Online ISBN: 978-3-319-30235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics