Skip to main content

Cyanobacteria and Algae of Biological Soil Crusts

  • Chapter
  • First Online:
Book cover Biological Soil Crusts: An Organizing Principle in Drylands

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

Filamentous cyanobacteria are the key organisms in biological soil crust formation in all biomes of the world. However, especially in temperate, arctic, and high alpine regions, as well as in few dry Savannah ecosystems, filamentous green algae may act in a similar role. Here, we give an overview on the role, diversity, and biogeography of cyanobacteria and eukaryotic algae in biocrusts from all climatic regions and continents of the Earth. We refer to the species level wherever this is possible. Currently, there have been 320 species of cyanobacteria and more than 350 species of eukaryotic algae described from biocrusts. Despite this high diversity, only a minority of the cyanobacterial and algal species found is responsible for the bulk of biocrust formation. Others likely are opportunistic, utilizing the habitat created by biocrusts in the harsh regions of the Earth where habitable space is rare. We also discuss methods for the sampling and identification of biocrust algae and cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Al Kharusi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72:418–428

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Ramette A, Hübner V, De Deckker P, de Beer D (2012) Microbial diversity of eolian dust sources from saline lake sediments and biological soil crusts in arid Southern Australia. FEMS Microbiol Ecol 80:294–304

    Article  CAS  PubMed  Google Scholar 

  • Belnap J, Lange OL (2003) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 1–503

    Book  Google Scholar 

  • Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Ecol Process 2:1–17

    Article  Google Scholar 

  • Boyer SL, Johansen JR, Flechtner VR (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16 rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  • Broady PA (1986) Ecology and taxonomy of terrestrial algae of Vestfold Hills. In: Pickard J (ed) Antarct oasis: terrestrial environments and history of the vestfold hills. Academic, London, pp 165–202

    Google Scholar 

  • Broady PA, Weinstein RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarct Sci 10:376–385

    Article  Google Scholar 

  • Büdel B (2003) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 141–152

    Google Scholar 

  • Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils in the Orinoco region and in the Guyana high-lands, Venezuela. Bot Acta 107:422–431

    Article  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salish M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8:2104–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb S, Sarma B, Rout J, Sengupta M (2013) Algal diversity in soil crusts of Assam University, Silchar Campus (North East India). Phykos 43:56–67

    Google Scholar 

  • Dojani S, Kauff F, Weber B, Büdel B (2014) Genotypic and phenotypic diversity of cyanobacteria in biological soil crusts of the Succulent Karoo and Nama Karoo of Southern Africa. Microb Ecol 67:286–301

    Article  PubMed  Google Scholar 

  • Elliott DR, Thomas AD, Hoon SR, Sen R (2014) Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers Conserv 23:1709–1733

    Article  Google Scholar 

  • Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the Central Desert of Baja California, Mexico. Great Basin Nat 58:295–311

    Google Scholar 

  • Flechtner VR, Pietrasiak N, Lewis LA (2013) Newly revealed diversity of green microalgae from wilderness areas of Joshua Tree National Park (JTNP). Monogr West N Am Nat 6:43–63

    Article  Google Scholar 

  • Friedl T, Rybalka N (2012) Systematics of the green algae: a brief introduction to the current status. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 73. Springer, Berlin, pp 259–280

    Google Scholar 

  • Fritsch FE, John RP (1942) An ecological and taxonomic study of the algae of British soils. II. Consideration of the species observed. Ann Bot NS 6:371–395

    Google Scholar 

  • Fucíková K, Lewis LA (2012a) Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea 12:83–93

    Article  Google Scholar 

  • Fucíková K, Lewis LA (2012b) Revision of the genus Bracteacoccus Tereg (Chlorophyceae, Chlorophyta) based on a phylogenetic approach. Nova Hedwigia 96:15–59

    Article  Google Scholar 

  • Fucíková K, Rada JS, Lukesová A, Lewis LA (2011) Cryptic diversity within the genus Pseudomuriella Hanagata (Chlorophyta, Chlorophyceae, Sphaeropleales) assessed using four barcode markers. Nova Hedwigia 93:29–46

    Article  Google Scholar 

  • Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4:1–6

    Article  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gollerbach MM, Shtina EA (1969) Soil algae. Nauka, Leningrad, 228 p, Pochvennye vodorosli (in Russian)

    Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357

    Article  PubMed  Google Scholar 

  • Hallmann C, Stannek L, Fritzlar D, Hause-Reitner D, Friedl T, Hoppert M (2013) Molecular diversity of phototrophic biofilms on building stone. FEMS Microbiol Ecol 84:355–372

    Article  CAS  PubMed  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, Heinken T (2004) Structure and reactivity of a biological soil crust from a xeric sandy Soil in Central Europe. Geomicrobiol J 21:183–191

    Article  Google Scholar 

  • Johansen JR, Kováčik L, Casamatta DA, Fučíková K, Kaštovský J (2011) Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283–302

    Article  Google Scholar 

  • Kanda H, Ohtani S, Imura S (2002) Plant communities at Dronning Maud Land Geoecology of Antarctic ice-free coastal landscapes. Ecol Stud 154:249–264

    Article  CAS  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota, part 3: heterocytous genera. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Freshwaterflora of Central Europe, vol 19/3. Springer, Berlin, pp 1–1130

    Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota, 1. Teil Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol 19/1. Gustav Fischer Verlag, Jena, pp 1–548

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota, 2. Teil Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa, vol 19/2. Elsevier GmbH, München, pp 1–759

    Google Scholar 

  • Kostikov I, Romanenko PO, Demchenko EM, Darienko TM, Mikhayljuk TI, Rybchynnskiy OV, Solonenko AM (2001) Soil algae of ukraine (Vodorosti gruntiv Ukrajiny). Phytosotsiologichniy Center, Kyiv, 300 p

    Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb Ecol 58:394–407

    Article  PubMed  Google Scholar 

  • Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451

    Article  Google Scholar 

  • Lewis LA, Flechtner VR (2004) Cryptic species of Scenedesmus from desert soils of western North America. J Phycol 40:1127–1137

    Article  Google Scholar 

  • Li K, Liu R, Zhang H, Yun J (2013) The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, Northwest China. Microb Ecol 66:40–48

    Article  CAS  PubMed  Google Scholar 

  • Lin C-S, Wu J-T (2014) Environmental factors affecting the diversity and abundance of soil photomicrobes in arid lands of subtropical Taiwan. Geomicrobiol J 31(4):350–359. doi:10.1080/01490451.2013.828135

    Article  Google Scholar 

  • Maestre FT, Martin N, Díez B, López-Poma R, Santos F, Luque I, Cortina J (2006) Watering, fertilization, and slurry inoculation promote recovery of biological soil crust function in degraded soils. Microb Ecol 52:365–377

    Article  PubMed  Google Scholar 

  • Maier S, Schmidt TSB, Zheng L, Peer T, Wagner V, Grube M (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755

    Article  Google Scholar 

  • Novakovskaya IV, Patova EN (2013) Algae of mountain tundra soils in the North and Polar Ural. Bull Nat Soc Moscow Sec Biol 118:57–66, Cyanoprokaryoty i vodorosli gorno-tundrovyh pochv Severnogo i Polyarnogo Urala. Bul. Moskova ispytateley prirody (in Russian)

    Google Scholar 

  • Novichkova-Ivanova LN (1980) Soil algae of phytocenoses of Sahara-Gobi Desert area. Nauka, Leningrad, 256 pp, Pochvennye vodorosli fitocenosov Saharo-Gobiyskoy pustynnoy oblasti (in Russian)

    Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  PubMed Central  Google Scholar 

  • Patzelt DJ, Hodač L, Friedl T, Pietrasiak N, Johansen JR (2014) Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile. J Phycol 50:698–710

    Article  CAS  PubMed  Google Scholar 

  • Peer T, Türk R, Gruber JP, Tschaikner A (2010) Species composition and pedological characteristics of biological soil crusts in high alpine ecosystem, Hohe Tauern, Austria. Eco Mont J Prot Mt Areas Res 2:23–30

    Google Scholar 

  • Redfield E, Barns SM, Belnap J, Daane L, Kuske CR (2002) Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol 40:55–63

    Article  CAS  PubMed  Google Scholar 

  • Reháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46:481–502

    Article  Google Scholar 

  • Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, López-Bautista JM (2011) Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol 58(2):218–231

    Article  PubMed  Google Scholar 

  • Rumrich U, Rumrich M, Lange-Bertalot H (1989) Diatomeen als “Fensteralgen” in der Namib-Wüste und anderen ariden Gebieten von SWA/Namibia. Dinteria 20:23–30

    Google Scholar 

  • Ruprecht U, Brunauer G, Türk R (2014) High photobiont diversity in the common European soil crust lichen Psora decipiens. Biodivers Conserv 23:1771–1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  PubMed  Google Scholar 

  • Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013a) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Lionard M, Kuske CR, Vincent WF (2013b) High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert. PLoS One 8:e71489. doi:10.1371/journal.pone.0071489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradova ON, Darienko TM (2008) Algae of Azovo-Syvashski National Park (Ukraine). Algologia 18:183–197, Vodorosli Azovo-Syvashskogo natsionalnogo parka (Ukraina) (in Russian)

    Google Scholar 

  • Watanabe Y, Martini JEJ, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408:574–578

    Article  CAS  PubMed  Google Scholar 

  • Waterbury J, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaady E, Ben-David EA, Sher Y, Tzirkin R, Nejidat A (2010) Inferring biological soil crust successional stage using combined PLFA, DGGE, physical and biophysiological analyses. Soil Biol Biochem 42:842–849

    Article  CAS  Google Scholar 

  • Zhang W, Zhang G, Liu G, Dong Z, Chen T, Zhang M, Dyson P, Lizhe A (2012) Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities. J Environ Sci 24:2004–2201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Büdel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Büdel, B., Dulić, T., Darienko, T., Rybalka, N., Friedl, T. (2016). Cyanobacteria and Algae of Biological Soil Crusts. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_4

Download citation

Publish with us

Policies and ethics