Skip to main content

Evaluating Map-Based RGB-D SLAM on an Autonomous Walking Robot

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 440))

Abstract

This paper demonstrates an application of a Simultaneous Localization and Mapping algorithm to localize a six-legged robot using data from a compact RGB-D sensor. The algorithm employs a new concept of combining fast Visual Odometry to track the sensor motion, and a map of 3-D point features and robot poses, which is then optimized. The focus of the paper is on evaluating the presented approach on a real walking robot under supervision of a motion registration system that provides ground truth trajectories. We evaluate the accuracy of the estimated robot trajectories applying the well-established methodologies of Relative Pose Error and Absolute Trajectory Error, and investigate the causes of accuracy degradation when the RGB-D camera is carried by a walking robot. Moreover, we demonstrate that the accuracy of robot poses is sufficient for dense environment mapping in 3-D.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Source code is available at https://github.com/LRMPUT/PUTSLAM/tree/release.

  2. 2.

    Data set is publicly available at http://lrm.put.poznan.pl/putslam/.

References

  1. Belter, D., Skrzypczyński, P.: Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Ind. Robot: Int. J. 40(3), 229–237 (2013)

    Article  Google Scholar 

  2. Belter, D., Walas, K.: A compact walking robot—flexible research and development platform. In: Szewczyk, R., et al. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques, AISC 267, pp. 343–352. Springer (2014)

    Google Scholar 

  3. Belter, D., Nowicki, M., Skrzypczyński, P.: On the performance of pose-based RGB-D visual navigation systems. In: Cremers, D., et al. (eds.) Computer Vision—ACCV 2014, LNCS 9004, pp. 407–423. Springer (2015)

    Google Scholar 

  4. Belter, D., Nowicki, M., Skrzypczyński, P.: Accurate map-based RGB-D SLAM for mobile robots. In: Reis, L., et al. (eds.) Robot 2015: Advances in Robotics, AISC. Springer (2015)

    Google Scholar 

  5. Belter, D., Nowicki, M., Skrzypczyński, P., Walas, K., Wietrzykowski, J.: Lightweight RGB-D SLAM system for search and rescue robots. In: Szewczyk, R., et al. (eds.) Progress in Automation, Robotics and Measuring Techniques, AISC 351, pp. 11–21. Springer (2015)

    Google Scholar 

  6. Belter, D., Labȩcki, P., Skrzypczyński, P.: Adaptive motion planning for autonomous rough terrain traversal with a walking robot. J. Field Robot., Wiley Early View (2015)

    Google Scholar 

  7. Claus, D., Fitzgibbon, A.: A rational function lens distortion model for general cameras.In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  8. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 30(1), 177–187 (2014)

    Article  Google Scholar 

  9. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  10. Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)

    Article  Google Scholar 

  11. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation, Shanghai, pp. 3607–3613 (2011)

    Google Scholar 

  12. Maier, R., Sturm, J., Cremers, D.: Submap-based bundle adjustment for 3D reconstruction from RGB-D data. In: Pattern Recognition, LNCS 8753, pp. 54–65. Springer (2014)

    Google Scholar 

  13. Nowicki, M., Skrzypczyński, P.: Experimental verification of a walking robot self-localization system with the Kinect sensor. J. Autom., Mobile Robot. Intell. Syst. 7(4), 42–51 (2013)

    Article  Google Scholar 

  14. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  15. Scherer, S., Zell, A.: Efficient onbard RGBD-SLAM for autonomous MAVs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 1062–1068 (2013)

    Google Scholar 

  16. Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: Comparative assessment of point feature detectors and descriptors in the context of robot navigation. J. Autom., Mobile Robot. Intell. Syst. 7(1), 11–20 (2013)

    Google Scholar 

  17. Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: The registration system for the evaluation of indoor visual SLAM and odometry algorithms. J. Autom., Mobile Robot. Intell. Syst. 7(2), 46–51 (2013)

    Google Scholar 

  18. Schmidt, A., Kasinski, A., Kraft, M., Fularz, M., Domagala, Z.: Calibration of the multi-camera registration system for visual navigation benchmarking. Int. J. Adv. Robot. Syst. 11(83) (2014)

    Google Scholar 

  19. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, pp. 593–600 (1994)

    Google Scholar 

  20. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 573–580 (2012)

    Google Scholar 

  21. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

    Google Scholar 

  22. Whelan, T., Johannsson, H., Kaess, M., Leonard, J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 5704–5711 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was financed by the Polish National Science Centre under decision DEC-2013/09/B/ST7/01583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Belter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Belter, D., Nowicki, M., Skrzypczyński, P. (2016). Evaluating Map-Based RGB-D SLAM on an Autonomous Walking Robot. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29357-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29356-1

  • Online ISBN: 978-3-319-29357-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics