Skip to main content

Inverse Problems in a Bayesian Setting

  • Chapter
  • First Online:
Book cover Computational Methods for Solids and Fluids

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 41))

Abstract

In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanchard, E.D., Sandu, A., Sandu, C.: A polynomial chaos-based Kalman filter approach for parameter estimation of mechanical systems. Journal of Dynamic Systems, Measurement, and Control 132(6), 061404 (2010). doi:10.1115/1.4002481

    Google Scholar 

  2. Bobrowski, A.: Functional Analysis for Probability and Stochastic Processes. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  3. Bosq, D.: Linear Processes in Function Spaces. Theory and Applications., Lecture Notes in Statistics, vol. 149. Springer, Berlin (2000). Contains definition of strong or \(L\)-orthogonality for vector valued random variables

    Google Scholar 

  4. Bosq, D.: General linear processes in Hilbert spaces and prediction. Journal of Statistical Planning and Inference 137, 879–894 (2007). doi:10.1016/j.jspi.2006.06.014

    Google Scholar 

  5. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer, Dordrecht (2000)

    Google Scholar 

  6. Evensen, G.: Data Assimilation — The Ensemble Kalman Filter. Springer, Berlin (2009)

    Google Scholar 

  7. Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Systems Magazine 29, 82–104 (2009). doi:10.1109/MCS.2009.932223

    Google Scholar 

  8. Galvis, J., Sarkis, M.: Regularity results for the ordinary product stochastic pressure equation. SIAM Journal on Mathematical Analysis 44, 2637–2665 (2012). doi:10.1137/110826904

    Google Scholar 

  9. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall, Boca Raton, FL (2006)

    Google Scholar 

  10. Ghanem, R., Spanos, P.D.: Stochastic finite elements—A spectral approach. Springer, Berlin (1991)

    Google Scholar 

  11. Goldstein, M., Wooff, D.: Bayes Linear Statistics—Theory and Methods. Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester (2007)

    Google Scholar 

  12. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)

    Google Scholar 

  13. Hida, T., Kuo, H.H., Potthoff, J., Streit, L.: White Noise—An Infinite Dimensional Calculus. Kluwer, Dordrecht (1999)

    Google Scholar 

  14. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.S.: Stochastic Partial Differential Equations. Birkhäuser, Basel (1996)

    Google Scholar 

  15. Janson, S.: Gaussian Hilbert spaces. Cambridge Tracts in Mathematics, 129. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  16. Jaynes, E.T.: Probability Theory, The Logic of Science. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  17. Kálmán, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME—J. of Basic Engineering (Series D) 82, 35–45 (1960)

    Google Scholar 

  18. Kučerová, A., Matthies, H.G.: Uncertainty updating in the description of heterogeneous materials. Technische Mechanik 30(1–3), 211–226 (2010)

    Google Scholar 

  19. Law, K.H.J., Litvinenko, A., Matthies, H.G.: Nonlinear evolution, observation, and update (2015)

    Google Scholar 

  20. Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley & Sons, Chichester (1969)

    Google Scholar 

  21. Madras, N.: Lectures on Monte Carlo Methods. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  22. Malliavin, P.: Stochastic Analysis. Springer, Berlin (1997)

    Google Scholar 

  23. Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. Journal of Computational Physics 224(2), 560–586 (2007). doi:10.1016/j.jcp.2006.10.010

    Google Scholar 

  24. Matthies, H.G.: Uncertainty quantification with stochastic finite elements. In: E. Stein, R. de Borst, T.J.R. Hughes (eds.) Encyclopaedia of Computational Mechanics. John Wiley & Sons, Chichester (2007). doi:10.1002/0470091355.ecm071

  25. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering 194(12–16), 1295–1331 (2005)

    Google Scholar 

  26. Matthies, H.G., Litvinenko, A., Pajonk, O., Rosić, B.V., Zander, E.: Parametric and uncertainty computations with tensor product representations. In: A. Dienstfrey, R. Boisvert (eds.) Uncertainty Quantification in Scientific Computing, IFIP Advances in Information and Communication Technology, vol. 377, pp. 139–150. Springer, Berlin (2012). doi:10.1007/978-3-642-32677-6

    Google Scholar 

  27. Moselhy, T.A., Marzouk, Y.M.: Bayesian inference with optimal maps. Journal of Computational Physics 231, 7815–7850 (2012). doi:10.1016/j.jcp.2012.07.022

    Google Scholar 

  28. Pajonk, O., Rosić, B.V., Litvinenko, A., Matthies, H.G.: A deterministic filter for non-Gaussian Bayesian estimation — applications to dynamical system estimation with noisy measurements. Physica D 241, 775–788 (2012). doi:10.1016/j.physd.2012.01.001

    Google Scholar 

  29. Pajonk, O., Rosić, B.V., Matthies, H.G.: Sampling-free linear Bayesian updating of model state and parameters using a square root approach. Computers and Geosciences 55, 70–83 (2013). doi:10.1016/j.cageo.2012.05.017

    Google Scholar 

  30. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, third edn. McGraw-Hill Series in Electrical Engineering. McGraw-Hill, New York (1991)

    Google Scholar 

  31. Parno, M., Moselhy, T., Marzouk, Y.: A multiscale strategy for Bayesian inference using transport maps. arXiv:1507.07024v1 [stat:CO] (2015)

  32. Rao, M.M.: Conditional Measures and Applications. CRC Press, Boca Raton, FL (2005)

    Google Scholar 

  33. Roman, L., Sarkis, M.: Stochastic Galerkin method for elliptic SPDEs: A white noise approach. Discrete Cont. Dyn. Syst. Ser. B 6, 941–955 (2006)

    Google Scholar 

  34. Rosić, B.V., Kučerová, A., Sýkora, J., Pajonk, O., Litvinenko, A., Matthies, H.G.: Parameter identification in a probabilistic setting. Engineering Structures 50, 179–196 (2013). doi:10.1016/j.engstruct.2012.12.029

    Google Scholar 

  35. Rosić, B.V., Litvinenko, A., Pajonk, O., Matthies, H.G.: Sampling-free linear Bayesian update of polynomial chaos representations. Journal of Computational Physics 231, 5761–5787 (2012). doi:10.1016/j.jcp.2012.04.044

    Google Scholar 

  36. Rosić, B.V., Matthies, H.G.: Identification of properties of stochastic elastoplastic systems. In: M. Papadrakakis, G. Stefanou, V. Papadopoulos (eds.) Computational Methods in Stochastic Dynamics, Computational Methods in Applied Sciences, vol. 26, pp. 237–253. Springer, Berlin (2013). doi:10.1007/978-94-007-5134-7

    Google Scholar 

  37. Saad, G., Ghanem, R.: Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter. Water Resources Research 45, W04,417 (2009). doi:10.1029/2008WR007148

  38. Sanz-Alonso, D., Stuart, A.M.: Long-time asymptotics of the filtering distribution for partially observed chaotic dynamical systems. arXiv:1411.6510v1 [math.DS] (2014)

  39. Segal, I.E., Kunze, R.A.: Integrals and Operators. Springer, Berlin (1978)

    Google Scholar 

  40. Stuart, A.M.: Inverse problems: A Bayesian perspective. Acta Numerica 19, 451–559 (2010). doi:10.1017/S0962492910000061

    Google Scholar 

  41. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia, PA (2004)

    Google Scholar 

  42. Tarn, T.J., Rasis, Y.: Observers for nonlinear stochastic systems. IEEE Transactions on Automatic Control 21, 441–448 (1976)

    Google Scholar 

  43. Wiener, N.: The homogeneous chaos. American Journal of Mathematics 60(4), 897–936 (1938)

    Google Scholar 

  44. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal of Scientific Computing 24, 619–644 (2002)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the German research foundation “Deutsche Forschungsgemeinschaft” (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann G. Matthies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matthies, H.G., Zander, E., Rosić, B.V., Litvinenko, A., Pajonk, O. (2016). Inverse Problems in a Bayesian Setting. In: Ibrahimbegovic, A. (eds) Computational Methods for Solids and Fluids. Computational Methods in Applied Sciences, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-27996-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27996-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27994-7

  • Online ISBN: 978-3-319-27996-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics