Skip to main content

Quantitative Trait Loci Mapping in Plants: Concepts and Approaches

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 11))

Abstract

The narrow genetic base of modern crop cultivars is a serious obstacle to sustain and improve crop productivity due to rapidly occurring vulnerability of genetically uniform cultivars to potentially new biotic and abiotic stresses. Plant germplasm resources, originated from a number of historical genetic events as a response to environmental stresses and selection, are the important reservoirs of natural genetic variations that can be exploited to increase the genetic base of the cultivars. However, many agriculturally important traits such as productivity and quality, tolerance to environmental stresses, and some of forms of disease resistance are quantitative (also called polygenic, continuous, multifactorial, or complex traits) in nature. The genetic variation of a quantitative trait is controlled by the collective effects of numerous genes, known as quantitative trait loci (QTLs). Identification of QTLs of agronomic importance and its utilization in a crop improvement requires mapping of these QTLs in the genome of crop species using molecular markers. This review will focus on the basic concepts and a brief description of existing methodologies for QTL mapping and their merits and demerits including traditional biparental mapping and the advanced linkage disequilibrium (LD)-based association mapping. Examples of some of the recent studies on association mapping in various crop species are provided to demonstrate the merits of high-resolution association mapping approach over traditional mapping methods. This review thus will provide non-expert readers of crop breeding community an opportunity to develop a basic understanding of dissecting and exploiting natural variations for crop improvement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abecasis GR, Cookson W (2000) GOLD—graphical overview of linkage disequilibrium. Bioinformatics 16:182–183

    Article  CAS  PubMed  Google Scholar 

  • Acuña TB, Rebetzke G, He X et al (2014) Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed 1–12

    Google Scholar 

  • Agrama HA, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97

    Article  CAS  Google Scholar 

  • Agrama H, Moussa M, Naser M et al (1999) Mapping of QTL for downy mildew resistance in maize. Theor Appl Genet 99:519–523

    Article  CAS  PubMed  Google Scholar 

  • Agrama H, Eizenga G, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356

    Article  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asad MA, Bai B, Lan C et al (2014) Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50. Crop J 2:308–314

    Article  Google Scholar 

  • Asins M (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Aulchenko YS, De Koning D-J, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Corke H, Sun M (2006) Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxy rice (Oryza sativa L.). Theor Appl Genet 113:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the forty-ninth annual corn and sorghum industry research conference pp 250–266

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 289–300

    Google Scholar 

  • Bonneau J, Taylor J, Parent B et al (2013) Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126:747–761

    Article  CAS  PubMed  Google Scholar 

  • Borba TCDO, Brondani RPV, Breseghello F et al (2010) Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet Mol Biol 33:515–524

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Burton AL, Johnson JM, Foerster JM et al (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 1–19

    Google Scholar 

  • Castro A, Tacaliti M, Giménez D et al (2008) Mapping quantitative trait loci for growth responses to exogenously applied stress induced hormones in wheat. Euphytica 164:719–727

    Article  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Cheema J, Ellis TH, Dicks J (2010) THREaD mapper studio: a novel, visual web server for the estimation of genetic linkage maps. Nucl Acids Res 38:188–193

    Article  CAS  Google Scholar 

  • Collard B, Jahufer M, Brouwer J et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui D, Xu C-Y, Tang C-F et al (2013) Genetic structure and association mapping of cold tolerance in improved japonica rice germplasm at the booting stage. Euphytica 193:369–382

    Article  CAS  Google Scholar 

  • Dang X, Thi TGT, Dong G et al (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239:1309–1319

    Article  CAS  PubMed  Google Scholar 

  • De Alencar Figueiredo L, Sine B, Chantereau J et al (2010) Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet 121:1171–1185

    Article  CAS  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras J-B et al (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    Article  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Iv B (2003) Structure of linkage disequilibrium in plants*. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190

    Article  CAS  Google Scholar 

  • Gomez SM, Boopathi NM, Kumar SS et al (2010) Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiol Plant 32:355–364

    Article  Google Scholar 

  • González-Martínez SC, Ersoz E, Brown GR et al (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hall D, Tegström C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Briefings in functional genomics elp048

    Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haseneyer G, Stracke S, Piepho H-P et al (2010) DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits. BMC Plant Biol 10:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T et al (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci 96:5937–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J. 2012 0(7):826-39

    Google Scholar 

  • Huang X-Q, Brûlé-Babel A (2012) Sequence diversity, haplotype analysis, association mapping and functional marker development in the waxy and starch synthase IIa genes for grain-yield-related traits in hexaploid wheat (Triticum aestivum L.). Mol Breed 30:627–645

    Article  CAS  Google Scholar 

  • Huang J, Zhang J, Li W et al (2013) Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. J Integr Plant Biol 55:735–744

    Article  CAS  PubMed  Google Scholar 

  • Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922

    Article  PubMed  Google Scholar 

  • Ingvarsson PK, Garcia MV, Luquez V et al (2008) Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178:2217–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal V, Mir R, Mohan A et al (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102

    Article  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Yan W, Zhu C et al (2012) Allelic analysis of sheath blight resistance with association mapping in rice. PLoS ONE 7:e32703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joukhadar R, El-Bouhssini M, Jighly A et al (2013) Genome-wide association mapping for five major pest resistances in wheat. Mol Breed 32:943–960

    Article  CAS  Google Scholar 

  • Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krill AM, Kirst M, Kochian LV et al (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE 5:e9958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulwal P, Kumar N, Gaur A et al (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  PubMed Central  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B et al (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang Z, Gao S et al (2008) Analysis of QTL for resistance to head smut (Sporisorium reiliana) in maize. Field crops Res 106:148–155

    Article  Google Scholar 

  • Li Q, Li L, Yang X et al (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Q, Yang X, Bai G et al (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yan W, Agrama H et al (2012) Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS ONE 7:e29350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Peng Z, Yang X et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50

    Article  CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M. Lander E (1993) Constructing genetic linkage maps with MAPMAKER/EXP. Version 3.0. Whitehead Institute for Biomedical Research Technical Report, 3rd edn

    Google Scholar 

  • Liu K, Muse SV (2005) Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Mu P, Li X et al (2008) Localization of QTL for basal root thickness in japonica rice and effect of marker-assisted selection for a major QTL. Euphytica 164:729–737

    Article  Google Scholar 

  • Liu Y, Subhash C, Yan J et al (2011) Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ Exp Bot 71:158–165

    Article  Google Scholar 

  • Liu S, Yang X, Zhang D et al (2014) Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus. Theor Appl Genet 127:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Lou J, Chen L, Yue G et al (2009) QTL mapping of grain quality traits in rice. J Cereal Sci 50:145–151

    Article  CAS  Google Scholar 

  • Ma X-F, Ross K, Gustafson J (2001) Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome 44:401–412

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A et al (2010) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot erq287

    Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcmullen MD, Kresovich S, Villeda HS et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Moreira JUV, Bento DAV, De Souza AP et al (2009) QTL mapping for reaction to phaeosphaeria leaf spot in a tropical maize population. Theor Appl Genet 119:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Nandi S, Subudhi P, Senadhira D et al (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet MGG 255:1–8

    Article  CAS  PubMed  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U et al (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    Article  CAS  Google Scholar 

  • Neale DB, Ingvarsson PK (2008) Population, quantitative and comparative genomics of adaptation in forest trees. Curr Opin Plant Biol 11:149–155

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Wu P, Senadhira D et al (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:1361–1369

    Article  CAS  Google Scholar 

  • Paliwal R, Röder MS, Kumar U et al (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  • Park KJ, Sa KJ, Kim BW et al (2014) Genetic mapping and QTL analysis for yield and agronomic traits with an F2: 3 population derived from a waxy corn× sweet corn cross. Genes Genom 36:179–189

    Article  Google Scholar 

  • Paterson AH (1996) Making genetic maps. Genome mapping in plants (biotechnology intelligence unit) 23–39

    Google Scholar 

  • Peng J, Bai Y, Haley S et al (2009) Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 135:95–122

    Article  CAS  PubMed  Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin software

    Google Scholar 

  • Phumichai C, Chunwongse J, Jampatong S et al (2012) Detection and integration of gene mapping of downy mildew resistance in maize inbred lines though linkage and association. Euphytica 187:369–379

    Article  CAS  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W et al (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114:1059–1070

    Article  PubMed  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends in Plant Science 11:213–216

    Google Scholar 

  • Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quarrie S, Gulli M, Calestani C et al (1994) Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet 89:794–800

    Article  CAS  PubMed  Google Scholar 

  • Ray J, Yu L, Mccouch S et al (1996) Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet 92:627–636

    Article  CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci 98:11479–11484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risch N (1992) Genetic linkage: interpreting LOD scores. Science 255:803–804

    Article  CAS  PubMed  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Google Scholar 

  • Rockman MV (2008) Reverse engineering the genotype–phenotype map with natural genetic variation. Nature 456:738–744

    Article  CAS  PubMed  Google Scholar 

  • Rostoks N, Ramsay L, Mackenzie K et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci 103:18656–18661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset M, Bonnin I, Remoué C et al (2011) Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:907–926

    Article  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra D, Chen X, Santra M et al (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Sehgal D, Yadav R (2009) Molecular markers based approaches for drought tolerance. In: Molecular techniques in crop improvement. Springer, Berlin, pp 207–230

    Google Scholar 

  • Setter TL, Yan J, Warburton M et al (2010) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot erq308

    Google Scholar 

  • Shi L, Lv X, Weng J et al (2014) Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea may L.). The Crop J 2:132–143

    Article  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Su Z, Hao C, Wang L et al (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Sun M, Xing Y et al (2001) Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 103:1037–1045

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tanksley S, Ganal M, Prince J et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Zhang H, Xu P et al (2014) Genetic mapping of a QTL controlling leaf width and grain number in rice. Euphytica 1–11

    Google Scholar 

  • Utz H, Melchinger A (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1–5

    Google Scholar 

  • Van Inghelandt D, Melchinger AE, Martinant J-P et al (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanniarajan C, Vinod K, Pereira A (2012) Molecular evaluation of genetic diversity and association studies in rice (Oryza sativa L.). J Genet 91:9–19

    Article  CAS  PubMed  Google Scholar 

  • Vijayalakshmi K, Fritz AK, Paulsen GM et al (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    Article  CAS  Google Scholar 

  • Wang A-Y, Li Y, Zhang C-Q (2012a) QTL mapping for stay-green in maize (Zea mays). Can J Plant Sci 92:249–256

    Article  Google Scholar 

  • Wang M, Yan J, Zhao J et al (2012b) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Mei H, Feng F et al (2009) Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet 119:459–470

    Article  PubMed  Google Scholar 

  • Weng J, Xie C, Hao Z et al (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE 6:e29229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitt SR, Buckler Iv ES (2003) Using natural allelic diversity to evaluate gene function. In: Plant functional genomics. Springer, Berlin, pp 123–139

    Google Scholar 

  • Wilson LM, Whitt SR, Ibáñez AM et al (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell Online 16:2719–2733

    Article  CAS  Google Scholar 

  • Xu F-F, Tang F-F, Shao Y-F et al (2014) Genotype× environment interactions for agronomic traits of rice revealed by association mapping. Rice Sci 21:133–141

    Article  Google Scholar 

  • Xue Y, Warburton ML, Sawkins M et al (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet 126:2587–2596

    Article  CAS  PubMed  Google Scholar 

  • Yan WG, Li Y, Agrama HA et al (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases [beta]-carotene in maize grain. Nat Genet 42:322–327

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Lu Y, Yang X et al (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10:e1004573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao H, Zhou Q, Li J et al (2002) Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci 99:6157–6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Nishida H, Zhu J et al (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552

    Article  CAS  PubMed  Google Scholar 

  • Young ND (1994) Constructing a plant genetic linkage map with DNA markers. In: DNA-based markers in plants. Springer, Berlin, pp 39–57

    Google Scholar 

  • Young N (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH et al (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Yu L-X, Morgounov A, Wanyera R et al (2012) Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor Appl Genet 125:749–758

    Article  PubMed  Google Scholar 

  • Zegeye H, Rasheed A, Makdis F et al (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9:e105593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hao C, Ren Q et al (2011) Association mapping of dynamic developmental plant height in common wheat. Planta 234:891–902

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu L, Fan X et al (2012) QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet 125:1797–1808

    Article  PubMed  Google Scholar 

  • Zhang X, Tang B, Yu F et al (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31:594–606

    Article  CAS  Google Scholar 

  • Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Yu J (2009) Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics 182:875–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES et al (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepmala Sehgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sehgal, D., Singh, R., Rajpal, V.R. (2016). Quantitative Trait Loci Mapping in Plants: Concepts and Approaches. In: Rajpal, V., Rao, S., Raina, S. (eds) Molecular Breeding for Sustainable Crop Improvement. Sustainable Development and Biodiversity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-27090-6_2

Download citation

Publish with us

Policies and ethics