Skip to main content

Metal Oxides and Lithium Alloys as Anode Materials for Lithium-Ion Batteries

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Metal oxides such as TiO2, Li4Ti5O12, SnO2, SnO, M2SnO4 (\( \mathrm{M} = \mathrm{Z}\mathrm{n} \), Co, Mn, Mg), TMO (\( \mathrm{T}\mathrm{M} = \mathrm{M}\mathrm{n} \), Fe, Co, Ni, or Cu), TM3O4 (\( \mathrm{T}\mathrm{M} = \mathrm{C}\mathrm{o} \), Fe, or Mn), and lithium alloys Li–Sn, Li–Si are among the next-generation anode materials for lithium–ion batteries with high prospect of replacing graphite. Most of these anode materials have higher specific capacities between the range of \( 600 - 1000\ \mathrm{m}\mathrm{A}\ \mathrm{h}\ {\mathrm{g}}^{-1} \) compared with \( 340\ \mathrm{m}\mathrm{A}\ \mathrm{h}\ {\mathrm{g}}^{-1} \) of graphite. These high-capacity anode materials normally face poor cycle performance due to severe volume change during the discharge/charge reactions which leads to crack and pulverization. To overcome these limitations, two commonly adopted strategies are nano-engineering and coating with carbon. In this chapter, we have discussed the metal oxides and lithium alloy anodes in three sections, with emphasis on their electrochemical reaction mechanisms with lithium. We have also presented a brief historical review based on the development of the metal oxides and lithium alloys as anode materials for lithium–ion battery, highlighted ongoing research strategies, and discussed the challenges that remain regarding the synthesis, characterization, and electrochemical performance of the materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  Google Scholar 

  3. Scrosati B, Hassoun J, Sun Y (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295

    Article  Google Scholar 

  4. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    Article  Google Scholar 

  5. Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    Article  Google Scholar 

  6. Goodenough JB, Park K (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  7. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  Google Scholar 

  8. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184

    Article  Google Scholar 

  9. von Cresce A, Xu K (2011) Electrolyte additive in support of 5 V li ion chemistry. J Electrochem Soc 158:A337–A342

    Article  Google Scholar 

  10. Capiglia C, Saito Y, Kageyama H, Mustarelli P, Iwamoto T et al (1999) 7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries. J Power Sources 81:859–862

    Article  Google Scholar 

  11. Kavan L, Grätzel M (2002) Facile synthesis of nanocrystalline (spinel) exhibiting fast li insertion. Electrochem Solid-State Lett 5:A39–A42

    Article  Google Scholar 

  12. Saravanan K, Ananthanarayanan K, Balaya P (2010) Mesoporous with high packing density for superior lithium storage. Energy Environ Sci 3:939–948

    Article  Google Scholar 

  13. Ren Y, Liu Z, Pourpoint F, Armstrong AR, Grey CP, Bruce PG (2012) Nanoparticulate TiO2 (B): an anode for lithium‐ion batteries. Angew Chem 124:2206–2209

    Article  Google Scholar 

  14. Du Pasquier A, Huang C, Spitler T (2009) Nano batteries with high power capability and improved cycle-life. J Power Sources 186:508–514

    Article  Google Scholar 

  15. He Y, Ning F, Li B, Song Q, Lv W et al (2012) Carbon coating to suppress the reduction decomposition of electrolyte on the electrode. J Power Sources 202:253–261

    Article  Google Scholar 

  16. Moretti A, Kim G, Bresser D, Renger K, Paillard E et al (2013) Investigation of different binding agents for nanocrystalline anatase anodes and its application in a novel, green lithium-ion battery. J Power Sources 221:419–426

    Article  Google Scholar 

  17. Yi T, Jiang L, Shu J, Yue C, Zhu R, Qiao H (2010) Recent development and application of as anode material of lithium ion battery. J Phys Chem Solid 71:1236–1242

    Article  Google Scholar 

  18. Zhu G, Wang Y, Xia Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652–6667

    Article  Google Scholar 

  19. Huang S, Wen Z, Zhu X, Gu Z (2004) Preparation and electrochemical performance of Ag doped. Electrochem Commun 6:1093–1097

    Article  Google Scholar 

  20. Huang S, Wen Z, Zhang J, Gu Z, Xu X (2006) composite as electrode materials for lithium-ion battery. Solid State Ion 177:851–855

    Article  Google Scholar 

  21. He Z, Wang Z, Cheng L, Li T, Li X et al (2013) Conductive surface modification with copper of as anode materials for Li-ion batteries. Mater Lett 107:273–275

    Article  Google Scholar 

  22. Wang B, Cao J, Liu Y (2014) Surface modification of spinel with Fe for lithium ion batteries. Mater Technol 29:124–128

    Article  Google Scholar 

  23. Zhang Q, Li X (2013) Recent developments in the doped- anode materials of lithium-ion batteries for improving the rate capability. Int J Electrochem Sci 8:6449–6456

    Google Scholar 

  24. Park JS, Baek S, Park Y, Kim JH (2014) Improving the electrochemical properties of Al, Zr co-doped as a lithium-ion battery anode material. J Korean Phys Soc 64:1545–1549

    Article  Google Scholar 

  25. Huang S, Wen Z, Gu Z, Zhu X (2005) Preparation and cycling performance of and co-substituted compounds. Electrochim Acta 50:4057–4062

    Article  Google Scholar 

  26. Li X, Qu M, Yu Z (2009) Structural and electrochemical performances of as anode material for lithium-ion batteries. J Alloys Compd 487:L12–L17

    Article  Google Scholar 

  27. Shen L, Yuan C, Luo H, Zhang X, Yang S, Lu X (2011) In situ synthesis of high-loading –graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 3:572–574

    Article  Google Scholar 

  28. Capsoni D, Bini M, Massarotti V, Mustarelli P, Ferrari S et al (2009) Cr and Ni doping of : cation distribution and functional properties. J Phys Chem C 113:19664–19671

    Article  Google Scholar 

  29. Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837

    Article  Google Scholar 

  30. Shen L, Uchaker E, Zhang X, Cao G (2012) Hydrogenated nanowire arrays for high rate lithium ion batteries. Adv Mater 24:6502–6506

    Article  Google Scholar 

  31. Naoi K, Naoi W, Aoyagi S, Miyamoto J, Kamino T (2012) New generation “nanohybrid supercapacitor”. Acc Chem Res 46:1075–1083

    Article  Google Scholar 

  32. Guler MO, Cevher O, Cetinkaya T, Tocoglu U, Akbulut H (2013) High capacity anode materials for Li-ion batteries. Energy Convers Manage 72:111–116

    Article  Google Scholar 

  33. Zhang H, Li G, An L, Yan T, Gao X, Zhu H (2007) Electrochemical lithium storage of titanate and titania nanotubes and nanorods. J Phys Chem C 111:6143–6148

    Article  Google Scholar 

  34. Chen JS, Lou XW (2009) Anatase nanosheet: an ideal host structure for fast and efficient lithium insertion/extraction. Electrochem Commun 11:2332–2335

    Article  Google Scholar 

  35. Yang M, Lee Y, Xu B, Powers K, Meng YS (2012) TiO2 flakes as anode materials for Li-ion-batteries. J Power Sources 207:166–172

    Article  Google Scholar 

  36. Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 81:90–94

    Article  Google Scholar 

  37. Lou XW, Archer LA (2008) A general route to nonspherical anatase hollow colloids and magnetic multifunctional particles. Adv Mater 20:1853–1858

    Article  Google Scholar 

  38. Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y (2009) Synthesis of anatase nanocrystals with exposed {001} facets. Nano Lett 9:2455–2459

    Article  Google Scholar 

  39. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153

    Article  Google Scholar 

  40. Wu B, Guo C, Zheng N, Xie Z, Stucky GD (2008) Nonaqueous production of nanostructured anatase with high-energy facets. J Am Chem Soc 130:17563–17567

    Article  Google Scholar 

  41. Takai S, Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Diffusion coefficient measurement of lithium ion in sintered by means of neutron radiography. Solid State Ion 123:165–172

    Article  Google Scholar 

  42. Kavan L, Fattakhova D, Krtil P (1999) Lithium insertion into mesoscopic and single‐crystal (rutile) electrodes. J Electrochem Soc 146:1375–1379

    Article  Google Scholar 

  43. Hu Y, Kienle L, Guo Y, Maier J (2006) High lithium electroactivity of nanometer‐sized rutile. Adv Mater 18:1421–1426

    Article  Google Scholar 

  44. Bokhimi X, Morales A, Aguilar M, Toledo-Antonio J, Pedraza F (2001) Local order in titania polymorphs. Int J Hydrog Energy 26:1279–1287

    Article  Google Scholar 

  45. Reddy MA, Pralong V, Varadaraju U, Raveau B (2008) Crystallite size constraints on lithium insertion into brookite. Electrochem Solid-State Lett 11:A132–A134

    Article  Google Scholar 

  46. Reddy MA, Kishore MS, Pralong V, Varadaraju U, Raveau B (2007) Lithium intercalation into nanocrystalline brookite. Electrochem Solid-State Lett 10:A29–A31

    Article  Google Scholar 

  47. Lee D, Park J, Jin Choi K, Choi H, Kim D (2008) Preparation of brookite‐type /carbon nanocomposite electrodes for application to Li ion batteries. Eur J Inorg Chem 2008:878–882

    Article  Google Scholar 

  48. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    Article  Google Scholar 

  49. Courtney IA, Dahn J (1997) Electrochemical and in situ X‐ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052

    Article  Google Scholar 

  50. Park M, Wang G, Kang Y, Wexler D, Dou S, Liu H (2007) Preparation and electrochemical properties of nanowires for application in lithium‐ion batteries. Angew Chem 119:764–767

    Article  Google Scholar 

  51. Lou XW, Deng D, Lee JY, Archer LA (2008) Preparation of /carbon composite hollow spheres and their lithium storage properties. Chem Mater 20:6562–6566

    Article  Google Scholar 

  52. Rong A, Gao X, Li G, Yan T, Zhu H et al (2006) Hydrothermal synthesis of as anode materials for Li-ion battery. J Phys Chem B 110:14754–14760

    Article  Google Scholar 

  53. Liu W, Huang X, Wang Z, Li H, Chen L (1998) Studies of stannic oxide as an anode material for lithium‐ion batteries. J Electrochem Soc 145:59–62

    Article  Google Scholar 

  54. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  Google Scholar 

  55. Lei D, Zhang M, Hao Q, Chen L, Li Q et al (2011) Morphology effect on the performances of nanorod arrays as anodes for Li-ion batteries. Mater Lett 65:1154–1156

    Article  Google Scholar 

  56. Liu J, Li Y, Huang X, Ding R, Hu Y et al (2009) Direct growth of nanorod array electrodes for lithium-ion batteries. J Mater Chem 19:1859–1864

    Article  Google Scholar 

  57. Wang J, Du N, Zhang H, Yu J, Yang D (2011) Large-scale synthesis of nanotube arrays as high-performance anode materials of Li-ion batteries. J Phys Chem C 115:11302–11305

    Article  Google Scholar 

  58. Yuan L, Guo Z, Konstantinov K, Liu HK, Dou S (2006) Nano-structured spherical porous anodes for lithium-ion batteries. J Power Sources 159:345–348

    Article  Google Scholar 

  59. Ko Y, Kang J, Park J, Lee S, Kim D (2009) Self-supported nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20:455701

    Article  Google Scholar 

  60. Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S (2014) Embedding tin nanoparticles in micron-sized disordered carbon for lithium-and sodium-ion anodes. Electrochim Acta 128:163–171

    Article  Google Scholar 

  61. Dahn J, Mar R, Abouzeid A (2006) Combinatorial study of and alloy negative electrode materials for Li-ion batteries. J Electrochem Soc 153:A361–A365

    Article  Google Scholar 

  62. Wen CJ, Huggins RA (1981) Thermodynamic study of the lithium‐tin system. J Electrochem Soc 128:1181–1187

    Article  Google Scholar 

  63. Besenhard J, Hess M, Komenda P (1990) Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ion 40:525–529

    Article  Google Scholar 

  64. Boukamp B, Lesh G, Huggins R (1981) All‐solid lithium electrodes with mixed‐conductor matrix. J Electrochem Soc 128:725–729

    Article  Google Scholar 

  65. Courtney IA, McKinnon W, Dahn J (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J Electrochem Soc 146:59–68

    Article  Google Scholar 

  66. Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125:5652–5653

    Article  Google Scholar 

  67. Zhang W, Hu J, Guo Y, Zheng S, Zhong L et al (2008) Tin‐nanoparticles encapsulated in elastic hollow carbon spheres for high‐performance anode material in lithium‐Ion batteries. Adv Mater 20:1160–1165

    Article  Google Scholar 

  68. Jung YS, Lee KT, Ryu JH, Im D, Oh SM (2005) Sn-carbon core-shell powder for anode in lithium secondary batteries. J Electrochem Soc 152:A1452–A1457

    Article  Google Scholar 

  69. Cui G, Hu Y, Zhi L, Wu D, Lieberwirth I et al (2007) A one‐step approach towards carbon‐encapsulated hollow tin nanoparticles and their application in lithium batteries. Small 3:2066–2069

    Article  Google Scholar 

  70. Prem Kumar T, Ramesh R, Lin Y, Fey GT (2004) Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem Commun 6:520–525

    Article  Google Scholar 

  71. Deng D, Lee JY (2009) Reversible storage of lithium in a rambutan‐like tin–carbon electrode. Angew Chem Int Ed 48:1660–1663

    Article  Google Scholar 

  72. Hassoun J, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn–C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175

    Article  Google Scholar 

  73. Hassoun J, Lee K, Sun Y, Scrosati B (2011) An advanced lithium ion battery based on high performance electrode materials. J Am Chem Soc 133:3139–3143

    Article  Google Scholar 

  74. Courtney IA, Dahn J (1997) Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2 BPO 6 glass. J Electrochem Soc 144:2943–2948

    Article  Google Scholar 

  75. Sakamoto J, Huang C, Surampudi S, Smart M, Wolfenstine J (1998) The effects of particle size on SnO electrode performance in lithium-ion cells. Mater Lett 33:327–329

    Article  Google Scholar 

  76. Martos M, Morales J, Sanchez L (2002) Mechanochemical synthesis of anode materials for Li-ion batteries. J Mater Chem 12:2979–2984

    Article  Google Scholar 

  77. Choi SH, Kim JS, Yoon YS (2004) Fabrication and characterization of composite anode thin film for lithium ion batteries. Electrochim Acta 50:547–552

    Article  Google Scholar 

  78. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  Google Scholar 

  79. Connor P, Irvine J (2001) Novel tin oxide spinel-based anodes for Li-ion batteries. J Power Sources 97:223–225

    Article  Google Scholar 

  80. Becker SM, Scheuermann M, Sepelák V, Eichhöfer A, Chen D et al (2011) Electrochemical insertion of lithium in mechanochemically synthesized. Phys Chem Chem Phys 13:19624–19631

    Article  Google Scholar 

  81. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  82. Li X, Wang C (2013) Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J Mater Chem A 1:165–182

    Article  Google Scholar 

  83. Poizot P, Laruelle S, Grugeon S, Tarascon J (2002) Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward li. J Electrochem Soc 149:A1212–A1217

    Article  Google Scholar 

  84. Zhang L, Hu P, Zhao X, Tian R, Zou R, Xia D (2011) Controllable synthesis of core–shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J Mater Chem 21:18279–18283

    Article  Google Scholar 

  85. Yang R, Wang Z, Liu J, Chen L (2004) Nano particles embedded in porous hard carbon spherules as anode material for li-ion batteries. Electrochem Solid-State Lett 7:A496–A499

    Article  Google Scholar 

  86. Liu H, Bo S, Cui W, Li F, Wang C, Xia Y (2008) Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries. Electrochim Acta 53:6497–6503

    Article  Google Scholar 

  87. Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self‐supported formation of needlelike Co3O4 nanotubes and their application as lithium‐ion battery electrodes. Adv Mater 20:258–262

    Article  Google Scholar 

  88. Binotto G, Larcher D, Prakash A, Herrera Urbina R, Hegde M, Tarascon J (2007) Synthesis, characterization, and li-electrochemical performance of highly porous powders. Chem Mater 19:3032–3040

    Article  Google Scholar 

  89. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2001) Searching for new anode materials for the li-ion technology: time to deviate from the usual path. J Power Sources 97:235–239

    Article  Google Scholar 

  90. Huang X, Tu J, Zhang B, Zhang C, Li Y et al (2006) Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries. J Power Sources 161:541–544

    Article  Google Scholar 

  91. Hosono E, Fujihara S, Honma I, Zhou H (2006) The high power and high energy densities li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochem Commun 8:284–288

    Article  Google Scholar 

  92. Aravindan V, Suresh Kumar P, Sundaramurthy J, Ling WC, Ramakrishna S, Madhavi S (2013) Electrospun NiO nanofibers as high performance anode material for li-ion batteries. J Power Sources 227:284–290

    Article  Google Scholar 

  93. Hu Y, Huang X, Wang K, Liu J, Jiang J et al (2010) Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. J Solid State Chem 183:662–667

    Article  Google Scholar 

  94. Xiang J, Tu J, Yuan Y, Wang X, Huang X, Zeng Z (2009) Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochim Acta 54:1160–1165

    Article  Google Scholar 

  95. Morales J, Sanchez L, Martin F, Ramos-Barrado J, Sanchez M (2005) Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474:133–140

    Article  Google Scholar 

  96. Xiang J, Tu J, Huang X, Yang Y (2008) A comparison of anodically grown CuO nanotube film and film as anodes for lithium ion batteries. J Solid State Electrochem 12:941–945

    Article  Google Scholar 

  97. Sahay R, Suresh Kumar P, Aravindan V, Sundaramurthy J, Chui Ling W et al (2012) High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J Phys Chem C 116:18087–18092

    Article  Google Scholar 

  98. Aragón M, Pérez-Vicente C, Tirado J (2007) Submicronic particles of manganese carbonate prepared in reverse micelles: a new electrode material for lithium-ion batteries. Electrochem Commun 9:1744–1748

    Article  Google Scholar 

  99. Ji L, Medford AJ, Zhang X (2009) Porous carbon nanofibers loaded with manganese oxide particles: formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19:5593–5601

    Article  Google Scholar 

  100. Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195:3300–3308

    Article  Google Scholar 

  101. Yu X, He Y, Sun J, Tang K, Li H et al (2009) Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun 11:791–794

    Article  Google Scholar 

  102. Gao M, Zhou P, Wang P, Wang J, Liang C et al (2013) FeO/C anode materials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermal reduction. J Alloys Compd 565:97–103

    Article  Google Scholar 

  103. Reddy M, Subba Rao G, Chowdari B (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113:5364–5457

    Article  Google Scholar 

  104. Huang G, Xu S, Lu S, Li L, Sun H (2014) Micro-/Nano-structured anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Interfaces 6(10):7236–7243

    Article  Google Scholar 

  105. Taberna P, Mitra S, Poizot P, Simon P, Tarascon J (2006) High rate capabilities -based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573

    Article  Google Scholar 

  106. He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469

    Article  Google Scholar 

  107. Pasero D, Reeves N, West A (2005) Co-doped: a possible anode material for lithium batteries. J Power Sources 141:156–158

    Article  Google Scholar 

  108. Dey A (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118:1547–1549

    Article  Google Scholar 

  109. Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the lithium-silicon system. J Solid State Chem 37:271–278

    Article  Google Scholar 

  110. Saint J, Morcrette M, Larcher D, Laffont L, Beattie S et al (2007) Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv Funct Mater 17:1765–1774

    Article  Google Scholar 

  111. Park C, Kim J, Kim H, Sohn H (2010) Li-alloy based anode materials for li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  Google Scholar 

  112. Wang JW, He Y, Fan F, Liu XH, Xia S et al (2013) Two-phase electrochemical lithiation in amorphous silicon. Nano Lett 13:709–715

    Article  Google Scholar 

  113. Kim H, Lee E, Sun Y (2014) Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Mater Today 17(6):285–297

    Article  Google Scholar 

  114. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF et al (2007) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  Google Scholar 

  115. Kang K, Lee H, Han D, Kim G, Lee D et al (2010) Maximum li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl Phys Lett 96:053110

    Article  Google Scholar 

  116. Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured/silicon rechargeable battery with high specific energy. Nano Lett 10:1486–1491

    Article  Google Scholar 

  117. Ding N, Xu J, Yao Y, Wegner G, Lieberwirth I, Chen C (2009) Improvement of cyclability of si as anode for Li-ion batteries. J Power Sources 192:644–651

    Article  Google Scholar 

  118. Chan CK, Patel RN, O’Connell MJ, Korgel BA, Cui Y (2010) Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4:1443–1450

    Article  Google Scholar 

  119. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    Article  Google Scholar 

  120. Cho J, Picraux ST (2013) Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett 13:5740–5747

    Article  Google Scholar 

  121. Quiroga-González E, Carstensen J, Föll H (2013) Optimal conditions for fast charging and long cycling stability of silicon microwire anodes for lithium ion batteries, and comparison with the performance of other si anode concepts. Energies 6:5145–5156

    Article  Google Scholar 

  122. Quiroga-González E, Carstensen J, Föll H (2013) Good cycling performance of high-density arrays of Si microwires as anodes for li ion batteries. Electrochim Acta 101:93–98

    Article  Google Scholar 

  123. Lee J, Lee KT, Cho J, Kim J, Choi N, Park S (2012) Chemical‐assisted thermal disproportionation of porous silicon monoxide into silicon‐based multicomponent systems. Angew Chem 124:2821–2825

    Article  Google Scholar 

  124. Goward G, Taylor N, Souza D, Nazar L (2001) The true crystal structure of Li17M4 (, Sn, Pb)–revised from. J Alloys Compd 329:82–91

    Article  Google Scholar 

  125. Tamura N, Ohshita R, Fujimoto M, Fujitani S, Kamino M, Yonezu I (2002) Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes. J Power Sources 107:48–55

    Article  Google Scholar 

  126. Tamura N, Ohshita R, Fujimoto M, Kamino M, Fujitani S (2003) Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries. J Electrochem Soc 150:A679–A683

    Article  Google Scholar 

  127. Luo B, Wang B, Liang M, Ning J, Li X, Zhi L (2012) Reduced graphene oxide‐mediated growth of uniform tin‐core/carbon‐sheath coaxial nanocables with enhanced lithium ion storage properties. Adv Mater 24:1405–1409

    Article  Google Scholar 

  128. Wu FD, Wu M, Wang Y (2011) Antimony-doped tin oxide nanotubes for high capacity lithium storage. Electrochem Commun 13:433–436

    Article  Google Scholar 

  129. Shafiei M, Alpas AT (2011) Electrochemical performance of a tin-coated carbon fibre electrode for rechargeable lithium-ion batteries. J Power Sources 196:7771–7778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Kebede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kebede, M., Zheng, H., Ozoemena, K.I. (2016). Metal Oxides and Lithium Alloys as Anode Materials for Lithium-Ion Batteries. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics