Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond

  • Klaus-Tycho Förster
  • Rijad Nuridini
  • Jara Uitto
  • Roger Wattenhofer
Conference paper

DOI: 10.1007/978-3-319-25258-2_24

Volume 9439 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Förster KT., Nuridini R., Uitto J., Wattenhofer R. (2015) Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond. In: Scheideler C. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 9439. Springer, Cham

Abstract

In the classical game of Cops and Robbers on graphs, the capture time is defined by the least number of moves needed to catch all robbers with the smallest amount of cops that suffice. While the case of one cop and one robber is well understood, it is an open question how long it takes for multiple cops to catch multiple robbers. We show that capturing \(\ell \in {\mathcal{O}}\left(n\right)\) robbers can take \(\Omega\left(\ell \cdot n\right)\) time, inducing a capture time of up to \(\Omega\left(n^2\right)\). For the case of one cop, our results are asymptotically optimal. Furthermore, we consider the case of a superlinear amount of robbers, where we show a capture time of \(\Omega \left(n^2 \cdot \log\left(\ell/n\right) \right)\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Klaus-Tycho Förster
    • 1
  • Rijad Nuridini
    • 1
  • Jara Uitto
    • 1
  • Roger Wattenhofer
    • 1
  1. 1.Computer Engineering and Networks LaboratoryETH ZurichZurichSwitzerland