Skip to main content

Path-Fault-Tolerant Approximate Shortest-Path Trees

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2015)

Abstract

Let G = (V,E) be an n-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a single-source shortest-path tree (SPT) of G with a sparse set of auxiliary edges selected from E, in order to create a structure which tolerates effectively a path failure in the SPT. This consists of a simultaneous fault of a set F of at most f adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k ≥ 1, it is possible to provide a very sparse (i.e., of size O(kn·f 1 + 1/k)) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k − 1)(2|F| + 1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 3 and a size of O(n logn) for the special case f = 2, and that it can be converted into a very efficient approximate-distance sensitivity oracle, that allows to quickly (even in optimal time, if k = 1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex: Near optimal data structures for undirected unweighted graphs. Algorithmica 66(1), 18–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in õ(n2) time. In: Proc. of 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 271–280 (2004)

    Google Scholar 

  4. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected O(n 2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauer, R., Wagner, D.: Batch dynamic single-source shortest-path algorithms: An experimental study. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 51–62. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Fault-tolerant approximate shortest-path trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 137–148. Springer, Heidelberg (2014)

    Google Scholar 

  7. Bollobás, B.: Random Graphs. Cambridge University Press (2001)

    Google Scholar 

  8. Chechik, S.: Approximate distance oracles with constant query time. In: Proc. of 46th ACM Symposium on Theory of Computing (STOC), pp. 654–663 (2014)

    Google Scholar 

  9. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: Proc. of 41st ACM Symposium on Theory of Computing (STOC), pp. 435–444. ACM (2009)

    Google Scholar 

  10. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles and routing schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 84–96. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Dynamically maintaining shortest path trees under batches of updates. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 286–297. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Experimental evaluation of dynamic shortest path tree algorithms on homogeneous batches. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 283–294. Springer, Heidelberg (2014)

    Google Scholar 

  13. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36 (1964)

    Google Scholar 

  14. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-source replacement paths. In: Proc. of 53rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 748–757. IEEE (2012)

    Google Scholar 

  15. Gualà, L., Proietti, G.: Exact and approximate truthful mechanisms for the shortest paths tree problem. Algorithmica 49(3), 171–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy, K.C.: The CAIDA IPv4 routed/24 topology dataset. http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

  18. Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Polynomial-time computable backup tables for shortest-path routing. In: Proc. of 10th Internaltional Colloquium on Structural Information Complexity (SIROCCO). Proceedings in Informatics, vol. 17, pp. 163–177. Carleton Scientific (2003)

    Google Scholar 

  19. Mereu, A., Cherubini, D., Fanni, A., Frangioni, A.: Primary and backup paths optimal design for traffic engineering in hybrid igp/mpls networks. In: Proc. of 7th International Workshop on Design of Reliable Communication Networks (DRCN), pp. 273–280. IEEE (2009)

    Google Scholar 

  20. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source shortest paths tree is good and fast. Algorithmica 35(1), 56–74 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parter, M., Peleg, D.: Fault tolerant approximate BFS structures. In: Proc. of 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1073–1092. SIAM (2014)

    Google Scholar 

  22. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of ACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa D’Andrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G. (2015). Path-Fault-Tolerant Approximate Shortest-Path Trees. In: Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science(), vol 9439. Springer, Cham. https://doi.org/10.1007/978-3-319-25258-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25258-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25257-5

  • Online ISBN: 978-3-319-25258-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics