Skip to main content

Heterogeneous Lipid Distributions in Membranes as Revealed by Electronic Energy Transfer

  • Chapter
  • First Online:
Reviews in Fluorescence 2015

Part of the book series: Reviews in Fluorescence ((RFLU,volume 8))

  • 933 Accesses

Abstract

The techniques achieving the highest resolution only can characterize membrane heterogeneities on the lowest molecular level. When Förster resonance energy transfer (FRET) is combined with Monte-Carlo (MC) simulations and is applied to the measurement of nanodomain/pore sizes it reaches an unbeatable resolution of 2–50 nm. While other techniques start being less efficient at such short distances FRET is most efficient in this region. Here, usefulness of MC-FRET is demonstrated on three different systems that contain heterogeneously distributed lipids: a nanoscopically phase separated bilayer, a bilayer containing pores and finally on bicelles consisting of highly curved and flat regions. Moreover, this paper gives the reader information on how a FRET experiment should be designed to achieve the highest FRET resolution but also which experimental conditions should be avoided. The theory describing FRET between randomly distributed donors and acceptors in a lipid bilayer is also described in this paper as well as reasons are explained why for heterogeneous probe distribution MC simulations should rather be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A r :

Area fraction of the Lo domains

B-F:

Baumann-Fayer

BODIPY-FL:

4,4-difluoro-4-bora-3a,4a-diaza-5,7-dimethyl-s-indacenyl

BODIPY 564/570:

4,4-difluoro-4-bora-3a,4a-diaza-5-styryl-dimethyl-s-indacenyl

C 2 :

Reduced surface concentration

C 2A :

Reduced surface concentration in phase A

C 2B :

Reduced surface concentration in phase B

CTxB:

Cholera toxin

DAET:

Donor-acceptor energy transfer

DDEM:

donor-donor energy migration

DiD:

1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindodicarbocyanine-5,5′-Disulfonic Acid (DiIC18(5)-DS)

FRET:

Förster resonance energy transfer

G s(t):

the excitation probability of the initially excited donor

κ :

Angular dependence of dipole-dipole coupling

τ D :

Fluorescence lifetime of the donor

MC:

Monte Carlo

R :

Radius of a lipid domain/raft

R 0 :

Förster radius

r 0 :

Limiting anisotropy

TCSPC:

Time-correlated single-photon counting

Ld :

Liquid disordered phase

Lo :

Liquid ordered phase

K i (i = D or A):

Partition coefficient of donors (i = D) or acceptors (i = A)

R :

Domain radius

R plane :

Radius of the bicellar planes (cf. Picture 7.3)

R pore :

Radius of the pores

SS:

Steady-state

Sph:

Sphingomyelin

TR:

Time-resolved

References

  1. Lindblom G, Orädd G (1994) NMR-studies of translational diffusion in lyotropic liquid-crystals and lipid-membranes. Prog Nucl Magn Reson Spectrosc 26:483–515

    Article  CAS  Google Scholar 

  2. Filippov A, Orädd G, Lindblom G (2007) Domain formation in model membranes studied by pulsed-field gradient-NMR: the role of lipid polyunsaturation. Biophys J 93:3182–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  4. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–U1121

    Article  CAS  PubMed  Google Scholar 

  5. Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW (2010) Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 99:3309–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Štefl M, Šachl R, Humpolíčková J, Cebecauer M, Macháň R, Johansson LB-Å, Hof M (2012) Dynamics and size of crosslinking-induced lipid nanodomains in model membranes. Biophys J 102(9):2104–2113

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chiantia S, Ries J, Kahya N, Schwille P (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. ChemPhysChem 7:2409–2418

    Article  CAS  PubMed  Google Scholar 

  8. de Almeida RFM, Loura LMS, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–1120

    Article  PubMed  Google Scholar 

  9. Šachl R, Humpolíčková J, Štefl M, Johansson LB-Å, Hof M (2011) Limitations of energy transfer in the determination of lipid nanodomain sizes. Biophys J 101:L60–L62

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sandström MC, Johansson E, Edwards K (2008) Influence of preparation path on the formation of discs and threadlike micelles in DSPE-PEG(2000)/lipid systems. Biophys Chem 132:97–103

    Article  PubMed  Google Scholar 

  11. Lundquist A, Wessman P, Rennie AR, Edwards K (2008) Melittin-lipid interaction: a comparative study using liposomes, micelles and bilayer disks. Biochim Et Biophy Acta-Biomembr 1778:2210–2216

    Article  CAS  Google Scholar 

  12. Almgren M (2011) Stomatosomes: perforated bilayer structures. Soft Matter 6:1383–1390

    Article  Google Scholar 

  13. van Dam L, Karlsson G, Edwards K (2004) Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. Biochim et Biophys Acta-Biomembr 1664:241–256

    Article  Google Scholar 

  14. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  CAS  PubMed  Google Scholar 

  15. Van der Meer BW, Coker G III, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH Publishers Inc, New York

    Google Scholar 

  16. Valeur B (ed) (2001) Molecular fluorescence principles and applications. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  17. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Singapore

    Book  Google Scholar 

  18. Vekshin NL (1997) Energy transfer in macromolecules. Spie Press, Bellingham/Washington, DC

    Google Scholar 

  19. Kalinin S, Johansson LB-Å (2004) Utility and considerations of donor-donor energy migration as a fluorescence method for exploring protein structure-function. J Fluoresc 14:681–691

    Article  CAS  PubMed  Google Scholar 

  20. Mikhalyov I, Bogen ST, Johansson LB-Å (2001) Donor-donor energy migration (DDEM) as a tool for studying aggregation in lipid phases. Spectrochim Acta a-Mol Biomol Spectrosc 57:1839–1845

    Article  CAS  PubMed  Google Scholar 

  21. Marushchak D, Gretskaya N, Mikhalyov I, Johansson LB-Å (2007) Self-aggregation – an intrinsic property of G(M1) in lipid bilayers. Mol Membr Biol 24:102–112

    Article  CAS  PubMed  Google Scholar 

  22. Marushchak D, Grenklo S, Johansson T, Karlsson R, Johansson LB-Å (2007) Fluorescence depolarization studies of filamentous actin analyzed with a genetic algorithm. Biophys J 93:3291–3299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Šachl R, Boldyrev I, Johansson LB-Å (2010) Localisation of BODIPY-labelled phosphatidylcholines in lipid bilayers. Phys Chem Chem Phys 12:6027–6034

    Article  PubMed  Google Scholar 

  24. Baumann J, Fayer MD (1986) Excitation transfer in disordered two-dimensional and anisotropic 3-dimensional systems – effects of spatial geometry on time-resolved observables. J Chem Phys 85:4087–4107

    Article  CAS  Google Scholar 

  25. Medhage B, Mukhtar E, Kalman B, Johansson LB-Å, Molotkovsky JG (1992) Electronic-energy transfer in anisotropic systems. 5. Rhodamine lipid derivatives in model membranes. J Chem Soc-Faraday Trans 88:2845–2851

    Article  CAS  Google Scholar 

  26. Loura LMS, Fernandes F, Prieto M (2010) Membrane microheterogeneity: Forster resonance energy transfer characterization of lateral membrane domains. Eur Biophys J Biophys Lett 39:589–607

    Article  CAS  Google Scholar 

  27. Towles KB, Brown AC, Wrenn SP, Dan N (2007) Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer. Biophys J 93:655–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loura LMS, Fedorov A, Prieto M (2001) Fluid-fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys J 80:776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown AC, Towles KB, Wrenn SP (2007) Measuring raft size as a function of membrane composition in PC-based systems: part 1 – binary systems. Langmuir 23:11180–11187

    Article  CAS  PubMed  Google Scholar 

  30. Johansson LB-Å, Engström S, Lindberg M (1992) Electronic-energy transfer in anisotropic systems. 3. Monte-Carlo simulations of energy migration in membranes. J Chem Phys 96:3844–3856

    Article  CAS  Google Scholar 

  31. Engström S, Lindberg M, Johansson LB-Å (1988) Monte-Carlo simulations of electronic-energy transfer in 3-dimensional systems – a comparison with analytical theories. J Chem Phys 89:204–213

    Article  Google Scholar 

  32. Šachl R, Mikhalyov I, Gretskaya N, Olzynska A, Hof M, Johansson LB-Å (2011) Distribution of BODIPY-labelled phosphatidylethanolamines in lipid bilayers exhibiting different curvatures. Phys Chem Chem Phys 13:11694–11701

    Article  PubMed  Google Scholar 

  33. Kiskowski MA, Kenworthy AK (2007) In silico characterization of resonance energy transfer for disk-shaped membrane domains. Biophys J 92:3040–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Troup GM, Tulenko TN, Lee SP, Wrenn SP (2004) Estimating the size of laterally phase separated cholesterol domains in model membranes with Forster resonance energy transfer: a simulation study. Colloids Surf B-Biointerfaces 33:57–65

    Article  CAS  Google Scholar 

  35. de Almeida RFM, Loura LMS, Prieto M (2009) Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 157:61–77

    Article  PubMed  Google Scholar 

  36. Hammond AT, Heberle FA, Baumgart T, Holowka D, Baird B, Feigenson GW (2005) Cross-linking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci U S A 102:6320–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 105:10005–10010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37:11856–11863

    Article  CAS  PubMed  Google Scholar 

  39. Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim et Biophys Acta-Biomembr 1462:157–183

    Article  CAS  Google Scholar 

  40. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Grant Agency of the Czech Republic via the grant 14-03141 (RŠ) and the Swedish Research Council (LBÅJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart B.-Å. Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Šachl, R., Johansson, L.BÅ. (2016). Heterogeneous Lipid Distributions in Membranes as Revealed by Electronic Energy Transfer. In: Geddes, C. (eds) Reviews in Fluorescence 2015. Reviews in Fluorescence, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-24609-3_7

Download citation

Publish with us

Policies and ethics