Skip to main content

Fast Algorithm Selection Using Learning Curves

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XIV (IDA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9385))

Included in the following conference series:

Abstract

One of the challenges in Machine Learning to find a classifier and parameter settings that work well on a given dataset. Evaluating all possible combinations typically takes too much time, hence many solutions have been proposed that attempt to predict which classifiers are most promising to try. As the first recommended classifier is not always the correct choice, multiple recommendations should be made, making this a ranking problem rather than a classification problem. Even though this is a well studied problem, there is currently no good way of evaluating such rankings. We advocate the use of Loss Time Curves, as used in the optimization literature. These visualize the amount of budget (time) needed to converge to a acceptable solution. We also investigate a method that utilizes the measured performances of classifiers on small samples of data to make such recommendation, and adapt it so that it works well in Loss Time space. Experimental results show that this method converges extremely fast to an acceptable solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulrahman, S.M., Brazdil, P.: Measures for combining accuracy and time for meta-learning. In: Meta-Learning and Algorithm Selection Workshop at ECAI, 2014, pp. 49–50 (2014)

    Google Scholar 

  2. Brazdil, P., Gama, J., Henery, B.: Characterizing the applicability of classification algorithms using meta-level learning. In: Bergadano, F., De Raedt, L. (eds.) ECML-94. LNCS, vol. 784, pp. 83–102. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  3. Brazdil, P.B., Soares, C.: A comparison of ranking methods for classification algorithm selection. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 63–74. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Fürnkranz, J., Petrak, J.: An evaluation of landmarking variants. In: Working Notes of the ECML/PKDD 2000 Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning, pp. 57–68 (2001)

    Google Scholar 

  5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  6. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Time-bounded sequential parameter optimization. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 281–298. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Leite, R., Brazdil, P.: Predicting relative performance of classifiers from samples. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 497–503. ACM (2005)

    Google Scholar 

  8. Leite, R., Brazdil, P.: Active testing strategy to predict the best classification algorithm via sampling and metalearning. In: ECAI, pp. 309–314 (2010)

    Google Scholar 

  9. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active testing. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 117–131. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Petrak, J.: Fast subsampling performance estimates for classification algorithm selection. In: Proceedings of the ECML-00 Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination, pp. 3–14 (2000)

    Google Scholar 

  11. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn you and i can tell you who you are: Landmarking various learning algorithms. In: Proceedings of the 17th International Conference on Machine Learning, pp. 743–750 (2000)

    Google Scholar 

  12. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 23–32. ACM (1999)

    Google Scholar 

  13. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65118 (1976)

    Google Scholar 

  14. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: Algorithm selection on data streams. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol. 8777, pp. 325–336. Springer, Heidelberg (2014)

    Google Scholar 

  15. Rossi, A.L.D., de Leon Ferreira, A.C.P., Soares, C., De Souza, B.F.: MetaStream: a meta-learning based method for periodic algorithm selection in time-changing data. Neurocomputing 127, 52–64 (2014)

    Article  Google Scholar 

  16. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. (CSUR) 41(1), 6 (2008)

    Article  Google Scholar 

  17. Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algorithm ranking. Mach. Learn. 93(1), 141–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases. Mach. Learn. 87(2), 127–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

    Article  Google Scholar 

  20. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  21. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by grant \(600.065.120.12\mathrm {N}150\) from the Dutch Fund for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan N. van Rijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

van Rijn, J.N., Abdulrahman, S.M., Brazdil, P., Vanschoren, J. (2015). Fast Algorithm Selection Using Learning Curves. In: Fromont, E., De Bie, T., van Leeuwen, M. (eds) Advances in Intelligent Data Analysis XIV. IDA 2015. Lecture Notes in Computer Science(), vol 9385. Springer, Cham. https://doi.org/10.1007/978-3-319-24465-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24465-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24464-8

  • Online ISBN: 978-3-319-24465-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics