Skip to main content

Modeling of Resilience Properties in Oscillatory Biological Systems Using Parametric Time Petri Nets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9308))

Abstract

Automated verification of living organism models allows us to gain previously unknown knowledge about underlying biological processes. In this paper, we show the benefits to use parametric time Petri nets in order to analyze precisely the dynamic behavior of biological oscillatory systems. In particular, we focus on the resilience properties of such systems. This notion is crucial to understand the behavior of biological systems (e.g. the mammalian circadian rhythm) that are reactive and adaptive enough to endorse major changes in their environment (e.g. jet-lags, day-night alternating work-time). We formalize these properties through parametric TCTL and demonstrate how changes of the environmental conditions can be tackled to guarantee the resilience of living organisms. In particular, we are able to discuss the influence of various perturbations, e.g. artificial jet-lag or components knock-out, with regard to quantitative delays. This analysis is crucial when it comes to model elicitation for dynamic biological systems. We demonstrate the applicability of this technique using a simplified model of circadian clock.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://romeo.rts-software.org/.

References

  1. Ahmad, J., Bernot, G., Comet, J.P., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. ComPlexUs 3(4), 231–251 (2007)

    Article  Google Scholar 

  2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: 1990 Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, LICS 1990, pp. 414–425. IEEE (1990)

    Google Scholar 

  3. Andreychenko, A., Magnin, M., Inoue, K.: Modeling of resilience properties in oscillatory biological systems using parametric time petri nets, supplementary information (2015). arXiv preprint arXiv:1506.06299 [cs.LO]

  4. Ballarini, P.: Analysing oscillatory trends of discrete-state stochastic processes through hasl statistical model checking (2014). arXiv preprint arXiv:1410.4027

  5. Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through probabilistic model checking. Electron. Notes Theoret. Comput. Sci. 229(1), 3–19 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power of time Petri nets. Theoret. Comput. Sci. 474, 1–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets. J. Logic Comput. 19(6), 1509–1540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaouiya, C., Remy, É., Thieffry, D.: Qualitative Petri net modelling of genetic networks. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 95–112. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. J. Discrete Algorithms 6(2), 165–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)

    Article  MATH  Google Scholar 

  11. Comet, J.P., Bernot, G., Das, A., Diener, F., Massot, C., Cessieux, A.: Simplified models for the mammalian circadian clock. Procedia Comput. Sci. 11, 127–138 (2012)

    Article  Google Scholar 

  12. Comet, J.-P., Klaudel, H., Liauzu, S.: Modeling multi-valued genetic regulatory networks using high-level Petri nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 208–227. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Edery, I.: Circadian rhythms in a nutshell. Physiol. Genomics 3(2), 59–74 (2000)

    Google Scholar 

  14. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Golombek, D.A., Rosenstein, R.E.: Physiology of circadian entrainment. Physiol. Rev. 90(3), 1063–1102 (2010)

    Article  Google Scholar 

  16. Grimm, V., Calabrese, J.M.: What is resilience? A short introduction. In: Deffuant, D., Gilbert, N. (eds.) Viability and Resilience of Complex Systems, pp. 3–13. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Holling, C.S.: Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973)

    Article  Google Scholar 

  19. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 401–415. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Koch, I., Heiner, M.: Petri Nets. In: Junker, B.H., Schreiber, F. (eds.) Biological Network Analysis, 7. Wiley Book Series on Bioinformatik, pp. 139–179. Wiley, New York (2008)

    Chapter  Google Scholar 

  21. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  22. Leloup, J.C., Goldbeter, A.: Toward a detailed computational model for the mammalian circadian clock. Proc. Natl. Acad. Sci. 100(12), 7051–7056 (2003)

    Article  Google Scholar 

  23. Leveson, N., Dulac, N., Zipkin, D., Cutcher-Gershenfeld, J., Carroll, J., Barrett, B.: Engineering resilience into safety-critical systems

    Google Scholar 

  24. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-checker for Petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Maruyama, H., Legaspi, R., Minami, K., Yamagata, Y.: General resilience: taxonomy and strategies. In: 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), pp. 1–8 (2014)

    Google Scholar 

  26. Matsuno, H., Inouye, S.I.T., Okitsu, Y., Fujii, Y., Miyano, S.: A new regulatory interaction suggested by simulations for circadian genetic control mechanism in mammals. J. Bioinform. Comput. Biol. 4(01), 139–153 (2006)

    Article  Google Scholar 

  27. Merlin, P.M., Farber, D.J.: Recoverability of communication protocols-implications of a theoretical study. IEEE Trans. Commun. 24(9), 1036–1043 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oster, H., Yasui, A., van der Horst, G.T.J., Albrecht, U.: Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Genes Dev. 16(20), 2633–2638 (2002)

    Article  Google Scholar 

  29. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE Computer Society, Washington, DC, USA (1977)

    Google Scholar 

  30. Rudell, R.L., Sangiovanni-Vincentelli, A.: Multiple-valued minimization for PLA optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 6(5), 727–750 (1987)

    Article  Google Scholar 

  31. Schwind, N., Okimoto, T., Inoue, K., Chan, H., Ribeiro, T., Minami, K., Maruyama, H.: Systems resilience: a challenge problem for dynamic constraint-based agent systems. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems. pp. 785–788. International Foundation for Autonomous Agents and Multiagent Systems (2013)

    Google Scholar 

  32. Spieler, D.: Characterizing oscillatory and noisy periodic behavior in Markov population models. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 106–122. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  33. Tavana, M., Busch, T.E., Davis, E.L.: Modeling operational robustness and resiliency with high-level Petri nets. Technical report, DTIC Document (2012)

    Google Scholar 

  34. Toussaint, J., Simonot-Lion, F., Thomesse, J.P.: Time constraint verifications methods based time Petri nets. In: 6th Workshop on Future Trends in Distributed Computing Systems (FTDCS 1997), pp. 262–267, Tunis, Tunisia (1997)

    Google Scholar 

  35. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri nets. J. Univers. Comput. Sci. 15(17), 3273–3304 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Andreychenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andreychenko, A., Magnin, M., Inoue, K. (2015). Modeling of Resilience Properties in Oscillatory Biological Systems Using Parametric Time Petri Nets. In: Roux, O., Bourdon, J. (eds) Computational Methods in Systems Biology. CMSB 2015. Lecture Notes in Computer Science(), vol 9308. Springer, Cham. https://doi.org/10.1007/978-3-319-23401-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23401-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23400-7

  • Online ISBN: 978-3-319-23401-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics