Skip to main content

Strengthening Convex Relaxations with Bound Tightening for Power Network Optimization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9255))

Abstract

Convexification is a fundamental technique in (mixed-integer) nonlinear optimization and many convex relaxations are parametrized by variable bounds, i.e., the tighter the bounds, the stronger the relaxations. This paper studies how bound tightening can improve convex relaxations for power network optimization. It adapts traditional constraint-programming concepts (e.g., minimal network and bound consistency) to a relaxation framework and shows how bound tightening can dramatically improve power network optimization. In particular, the paper shows that the Quadratic Convex relaxation of power flows, enhanced by bound tightening, almost always outperforms the state-of-the-art Semi-Definite Programming relaxation on the optimal power flow problem.

NICTA—NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T.: Scip: solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009). http://dx.doi.org/10.1007/s12532-008-0001-1

    Article  MATH  MathSciNet  Google Scholar 

  2. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems 30(67), 383–392 (2008)

    Article  Google Scholar 

  3. Belotti, P.: Couenne: User manual (2009). https://projects.coin-or.org/Couenne/ (accessed April 10, 2015)

  4. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tightening (2012). http://www.optimization-online.org/DB_HTML/2012/01/3325.html

  5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex minlp. Optimization Methods Software 24(4–5), 597–634 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benhamou, F., McAllester, D., Van Hentenryck, P.: Clp (intervals) revisited.Tech. rep., Brown University, Providence, RI, USA (1994)

    Google Scholar 

  7. Bent, R., Coffrin, C., Gumucio, R., Van Hentenryck, P.: Transmission network expansion planning: Bridging the gap between ac heuristics and dc approximations. In: Proceedings of the 18th Power Systems Computation Conference (PSCC 2014), Wroclaw, Poland (2014)

    Google Scholar 

  8. Berthold, T., Heinz, S., Vigerske, S.: Extending a cip framework to solvemiqcps. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 427–444. Springer New York (2012)

    Google Scholar 

  9. Chen, Y., Luh, P., Guan, C., Zhao, Y., Michel, L., Coolbeth, M., Friedland, P., Rourke, S.: Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Transactions on Power Systems 25(1), 322–330 (2010)

    Article  Google Scholar 

  10. Coffrin, C., Gordon, D., Scott, P.: NESTA, The Nicta Energy System Test Case Archive. CoRR abs/1411.0359 (2014). http://arxiv.org/abs/1411.0359

  11. Coffrin, C., Hijazi, H., Van Hentenryck, P.: The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow. CoRR abs/1502.07847 (2015). http://arxiv.org/abs/1502.07847

  12. Coffrin, C., Van Hentenryck, P.: Transmission system restoration: Co-optimization of repairs, load pickups, and generation dispatch. International Journal of Electrical Power & Energy Systems (2015) (forthcoming)

    Google Scholar 

  13. Farivar, M., Clarke, C., Low, S., Chandy, K.: Inverter var control for distribution systems with renewables. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 457–462, October 2011

    Google Scholar 

  14. Fisher, E., O’Neill, R., Ferris, M.: Optimal transmission switching. IEEE Transactions on Power Systems 23(3), 1346–1355 (2008)

    Article  Google Scholar 

  15. Fourer, R., Gay, D.M., Kernighan, B.: AMPL: a mathematical programming language. In: Wallace, S.W. (ed.) Algorithms and Model Formulations in Mathematical Programming, pp. 150–151. Springer-Verlag New York Inc., New York (1989)

    Chapter  Google Scholar 

  16. Fu, Y., Shahidehpour, M., Li, Z.: Security-constrained unit commitment with ac constraints*. IEEE Transactions on Power Systems 20(3), 1538–1550 (2005)

    Article  Google Scholar 

  17. Hedman, K., Ferris, M., O’Neill, R., Fisher, E., Oren, S.: Co-optimization of generation unit commitment and transmission switching with n-1 reliability. In: 2010 IEEE Power and Energy Society General Meeting, pp. 1–1, July 2010

    Google Scholar 

  18. Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations of mixed-integer nonlinear programs in power systems (2013). http://www.optimization-online.org/DB_HTML/2013/09/4057.html

  19. Hijazi, H., Thiebaux, S.: Optimal ac distribution systems reconfiguration. In: Proceedings of the 18th Power Systems Computation Conference (PSCC 2014), Wroclaw, Poland (2014)

    Google Scholar 

  20. Jabr, R.: Radial distribution load flow using conic programming. IEEE Transactions on Power Systems 21(3), 1458–1459 (2006)

    Article  MathSciNet  Google Scholar 

  21. Jabr, R.: Optimization of ac transmission system planning. IEEE Transactions on Power Systems 28(3), 2779–2787 (2013)

    Article  Google Scholar 

  22. Kundur, P.: Power System Stability and Control. McGraw-Hill Professional (1994)

    Google Scholar 

  23. Lavaei, J., Low, S.: Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems 27(1), 92–107 (2012)

    Article  Google Scholar 

  24. Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-Feasibility on Tree Networks is NP-Hard. IEEE Transactions on Power Systems (2015) (to appear)

    Google Scholar 

  25. Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.) Global Optimization, Nonconvex Optimization and Its Applications, vol. 84, pp. 211–262. Springer, US (2006). http://dx.doi.org/10.1007/0-387-30528-9_8

  26. Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem (2014). http://www.ee.columbia.edu/ lavaei/SCOPF_2014.pdf (accessed February 22, 2015)

  27. McCormick, G.: Computability of global solutions to factorable nonconvex programs: Part i convex underestimating problems. Mathematical Programming 10, 146–175 (1976)

    Article  MathSciNet  Google Scholar 

  28. Miller, J.: Power system optimization smart grid, demand dispatch, and microgrids, September 2011. http://www.netl.doe.gov/smartgrid/referenceshelf/presentations/SE%20Dist%20Apparatus%20School_Final_082911_rev2.pdf (accessed April 22, 2012)

  29. Momoh, J., Adapa, R., El-Hawary, M.: A review of selected optimal power flow literature to 1993. i. nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems 14(1), 96–104 (1999)

    Article  Google Scholar 

  30. Momoh, J., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993. ii. newton, linear programming and interior point methods. IEEE Transactions on Power Systems 14(1), 105–111 (1999)

    Article  Google Scholar 

  31. Montanari, U.: Networks of Constraints : Fundamental Properties and Applications to Picture Processing. Information Science 7(2), 95–132 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ott, A.: Unit commitment in the pjm day-ahead and real-time markets, June 2010. http://www.ferc.gov/eventcalendar/Files/20100601131610-Ott,%20PJM.pdf (accessed April 22, 2012)

  33. Purchala, K., Meeus, L., Van Dommelen, D., Belmans, R.: Usefulness of DC power flow for active power flow analysis. In: Power Engineering Society General Meeting, pp. 454–459 (2005)

    Google Scholar 

  34. Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization. Journal of Global Optimization 8(2), 107–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sahinidis, N.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction. LNCS, vol. 2861, pp. 1–16. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  36. Toh, K.C., Todd, M., Ttnc, R.H.: Sdpt3 - a matlab software package for semidefinite programming. Optimization Methods and Software 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  37. Van Hentenryck, P., McAllister, D., Kapur, D.: Solving Polynomial Systems Using a Branch and Prune Approach. SIAM Journal on Numerical Analysis 34(2) (1997)

    Google Scholar 

  38. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for Global Optimization. The MIT Press, Cambridge (1997)

    Google Scholar 

  39. Van Hentenryck, P., Saraswat, V., Deville, Y.: The design, implementation, and evaluation of the constraint language cc(FD). In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910, pp. 293–316. Springer, Heidelberg (1995)

    Google Scholar 

  40. Verma, A.: Power grid security analysis: An optimization approach. Ph.D. thesis, Columbia University (2009)

    Google Scholar 

  41. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carleton Coffrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Coffrin, C., Hijazi, H.L., Van Hentenryck, P. (2015). Strengthening Convex Relaxations with Bound Tightening for Power Network Optimization. In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23219-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23218-8

  • Online ISBN: 978-3-319-23219-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics