Skip to main content

A Formalisation of Finite Automata Using Hereditarily Finite Sets

  • Conference paper
  • First Online:
Automated Deduction - CADE-25 (CADE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9195))

Included in the following conference series:

Abstract

Hereditarily finite (HF) set theory provides a standard universe of sets, but with no infinite sets. Its utility is demonstrated through a formalisation of the theory of regular languages and finite automata, including the Myhill-Nerode theorem and Brzozowski’s minimisation algorithm. The states of an automaton are HF sets, possibly constructed by product, sum, powerset and similar operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.
    figure an

    denotes a typed universal set, here the set of all words.

References

  1. Ballarin, C.: Locales: A module system for mathematical theories. J. Autom. Reasoning 52(2), 123–153 (2014)

    Article  MathSciNet  Google Scholar 

  2. Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Methods Comput. Sci. 8(1), 1–42 (2012)

    Article  MathSciNet  Google Scholar 

  3. Champarnaud, J., Khorsi, A., Paranthoën, T.: Split and join for minimizing: Brzozowski’s algorithm. In: Balík, M., Simánek, M. (eds.) The Prague Stringology Conference, pp. 96–104. Czech Technical University, Department of Computer Science and Engineering (2002)

    Google Scholar 

  4. Constable, R.L., Jackson, P.B., Naumov, P., Uribe, J.C.: Constructively formalizing automata theory. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, pp. 213–238. MIT Press (2000)

    Google Scholar 

  5. Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82–97. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley, Boston (1969)

    Google Scholar 

  7. Kozen, D.: Automata and computability. Springer, New York (1997)

    Book  MATH  Google Scholar 

  8. Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation algebra. J. Autom. Reasoning 49(1), 95–106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nipkow, T.: Verified lexical analysis. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 1–15. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equivalence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466. Springer, Heidelberg (2014)

    Google Scholar 

  11. Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput. Logic 7(4), 658–675 (2006)

    Article  MathSciNet  Google Scholar 

  12. Paulson, L.C.: Finite automata in hereditarily finite set theory. Archive of Formal Proofs, February 2015. http://afp.sf.net/entries/Finite_Automata_HF.shtml, Formal proof development

  13. Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. J. Autom. Reasoning 55(1), 1–37 (2015). Available online at http://link.springer.com/article/10.1007%2Fs10817-015-9322-8

  14. Świerczkowski, S.: Finite sets and Gödel’s incompleteness theorems. Dissertationes Mathematicae 422, 1–58 (2003). http://journals.impan.gov.pl/dm/Inf/422-0-1.html

  15. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based on regular expressions. J. Autom. Reasoning 52(4), 451–480 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Christian Urban and Tobias Nipkow offered advice, and suggested Brzozowski’s minimisation algorithm as an example. The referees made a variety of useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence C. Paulson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Paulson, L.C. (2015). A Formalisation of Finite Automata Using Hereditarily Finite Sets. In: Felty, A., Middeldorp, A. (eds) Automated Deduction - CADE-25. CADE 2015. Lecture Notes in Computer Science(), vol 9195. Springer, Cham. https://doi.org/10.1007/978-3-319-21401-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21401-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21400-9

  • Online ISBN: 978-3-319-21401-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics