Skip to main content

There are No Black Holes—Pseudo-Complex General Relativity

  • Chapter
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 170))

Abstract

After a short review on attempts to extend General Relativity, pseudo-complex variables are introduced and their main properties are restated. A modified variational principle has to be introduced in order to obtain a new theory. This allows the appearance of an additional contribution, whose origin is a repulsive, dark energy. After the presentation of the general formalism, as examples the Schwarzschild and the Kerr solutions are discussed. It is shown that a collapsing mass increasingly accumulates dark energy until the collapse is stopped. Rather than a black hole, a gray star is formed. We discuss a possible experimental verification, investigating the orbital frequency of a particle in a circular orbit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Einstein, Ann. Math. 578, 46 (1945)

    Google Scholar 

  2. A. Einstein, Rev. Mod. Phys. 35, 20 (1948)

    Google Scholar 

  3. C. Mantz, T. Prokopec. arXiv:gr-qc/0804.0213v1 (2008)

  4. D. Lovelook, Annali di Matematica Pura ed Applicata 83(1), 43 (1969)

    Article  Google Scholar 

  5. M. Born, Proc. Roy. Soc. A 165, 291 (1938)

    Article  ADS  Google Scholar 

  6. M. Born, Rev. Mod. Phys. 21, 463 (1949)

    Article  ADS  MATH  Google Scholar 

  7. E.R. Caianiello, Lett. Nuo. Cim. 32, 65 (1981)

    Article  MathSciNet  Google Scholar 

  8. H.E. Brandt, Found. Phys. Lett. 2, 39 (1989)

    Article  Google Scholar 

  9. H.E. Brandt, Found. Phys. Lett. 4, 523 (1989)

    Article  Google Scholar 

  10. H.E. Brandt, Found. Phys. Lett. 6, 245 (1993)

    Article  MathSciNet  Google Scholar 

  11. R.G. Beil, Found. Phys. 33, 1107 (2003)

    Article  MathSciNet  Google Scholar 

  12. R.G. Beil, Int. J. Theor. Phys. 26, 189 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. R.G. Beil, Int. J. Theor. Phys. 28, 659 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. R.G. Beil, Int. J. Theor. Phys. 31, 1025 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.W. Moffat, Phys. Rev. D 19, 3554 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. G. Kunstatter, J.W. Moffat, J. Malzan, J. Math. Phys. 24, 886 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. F. Antonuccio, Semi-Complex Analysis and Mathematical Physics. arXiv:gr-qc/9311032

  18. I.L. Kantor, A.S. Solodovnikov, Hypercomplex Numbers, An Elementary Introduction to Algebra (Springer, Heidelberg, 1989)

    Google Scholar 

  19. P.O. Hess, W. Greiner, Int. J. Mod. Phys. E 16, 1643 (2007)

    Article  ADS  Google Scholar 

  20. P.O. Hess, W. Greiner, Int. J. Mod. Phys. E 18, 51 (2009)

    Article  ADS  Google Scholar 

  21. P.O. Hess, L. Maghlaoui, W. Greiner, Int. J. Mod. Phys. E 19, 1315 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Caspar, T. Schönenbach, P.O. Hess, M. Schäfer, W. Greiner, Int. J. Mod. Phys. E 21, 1250015 (2012)

    Google Scholar 

  23. R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity (McGraw Hill, New York, 1975)

    Google Scholar 

  24. F. P. Schuller, Dirac-Born-Infeld kinematics, maximal acceleration and almost product manifolds, Ph.D. thesis, Cambridge (2003)

    Google Scholar 

  25. F.P. Schuller, M.N.R. Wohlfarth, T.W. Grimm, Class. Quantum Grav. 20(1)

    Google Scholar 

  26. C.M. Will, Living Rev. Relat. 9, 3 (2006)

    ADS  Google Scholar 

  27. M. Visser, Phys. Rev. D 54, 5103 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  28. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman Company, San Francisco, 1973)

    Google Scholar 

  29. T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Mueller, M. Schäfer, W. Greiner, Month. Notic. Roy. Astr. Soc. 430, 2999 (2013)

    Google Scholar 

  30. T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Mueller, M. Schäfer, W. Greiner, see contribution within this volume

    Google Scholar 

Download references

Acknowledgments

Financial support from the Frankfurt Institute for Advanced Studies (FIAS), “Stiftung Polytechnische Gesellschaft Frankfurt am Main” (SPTG) and from CONACyT are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Greiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greiner, W., Hess, P.O., Schäfer, M., Schönenbach, T., Caspar, G. (2016). There are No Black Holes—Pseudo-Complex General Relativity. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_4

Download citation

Publish with us

Policies and ethics