Skip to main content

Ecological Recovery Potential of Freshwater Organisms: Consequences for Environmental Risk Assessment of Chemicals

  • Chapter
Book cover Reviews of Environmental Contamination and Toxicology Volume 236

Abstract

Chemical contaminants released into the in the environment may have adverse effects on (non-target) species, populations and communities. The return of a stressed system to its pre-disturbance or other reference state, i.e. the ecological recovery, may depend on various factors related to the affected taxon, the ecosystem of concern and the type of stressor with consequences for the assessment and management of risks associated with chemical contaminants. Whereas the effects caused by short-term exposure might be acceptable to some extent, the conditions under which ecological recovery can serve as a decision criterion in the environmental risk assessment of chemical stressors remains to be evaluated. For a generic consideration of recovery in the risk assessment of chemicals, we reviewed case studies of natural and artificial aquatic systems and evaluate five aspects that might cause variability in population recovery time: (1) taxonomic differences and life-history variability, (2) factors related to ecosystem type and community processes, (3) type of disturbance, (4) comparison of field and semi-field studies, and (5) effect magnitude, i.e., the decline in population size following disturbance. We discuss our findings with regard to both retrospective assessments and prospective risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artigas J, Arts G, Babut M, Barra Caracciolo A, Charles S, Chaumot A, Combourieu B, Dahllöf I, Despréaux FB, Friberg N, Garric J, Geffard O, Gourlay-Francé C, Hein M, Hjorth M, Krauss M, De Lange HJ, Lahr J, Lehtonen KK, Lettieri T, Liess M, Lofts S, Mayer P, Morin S, Paschke A, Svndsen C, Usseglio-Polatera P, Van den Brink N, Vindimian E, Williams R (2012) Towards a renewed research agenda in ecotoxicology. Environ Pollut 160:201–206

    Article  CAS  Google Scholar 

  • Barnes LE (1983) The colonization of ball-clay ponds by macroinvertebrates and macrophytes. Freshwater Biol 13:561–578

    Article  Google Scholar 

  • Barnthouse LW (2004) Quantifying population recovery rates for ecological risk assessment. Environ Toxicol Chem 2:500–508

    Article  Google Scholar 

  • Barrat-Segretain MH, Amoros C (1996) Recovery of riverine vegetation after experimental disturbance: a field test of the patch dynamics concept. Hydrobiologia 321:53–68

    Article  Google Scholar 

  • Beketov MA, Liess M (2012) Ecotoxicology and macroecology – time for integration. Environ Pollut 162:247–254

    Article  CAS  Google Scholar 

  • Beketov MA, Schäfer RB, Marwitz A, Paschke A, Liess M (2008) Long-term stream invertebrate community alterations induced by the insecticide thiacloprid: effect concentrations and recovery dynamics. Sci Total Environ 405:96–108

    Article  CAS  Google Scholar 

  • Bender EA, Case TJ, Gilpin ME (1984) Perturbation experiments in community ecology – theory and practice. Ecology 65:1–13

    Article  Google Scholar 

  • Biggs J, Brown C (2010) Ecological characterization of water bodies in clay landscapes of the United Kingdom. In: Brock TCM, Alix A, Brown CD, Capri E, Gottesbüren BFF, Heimbach F, Lythgo CM, Schulz R, Streloke E (eds) Linking aquatic exposure and effects in the risk assessment of plant protection products. Taylor and Francis Group, London, pp 304–320

    Google Scholar 

  • Biggs J, Corfield A, Grøn P, Hansen HO, Walker D, Whitfield W, Williams P (1998) Restoration of the rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project V – short-term impacts on the conservation value of aquatic macroinvertebrate and macrophyte assemblages. Aquat Conserv Mar Freshw Ecosyst 8:241–255

    Article  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181

    Article  Google Scholar 

  • Bingham CR, Miller AC (1989) Colonization of a man-made gravel bar by Oligochaeta. Hydrobiologia 180:229–234

    Article  Google Scholar 

  • Brendonck L, Riddoch BJ (1999) Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda). Biol J Linn Soc 67:87–95

    Article  Google Scholar 

  • Brittain JE, Eikeland TJ (1988) Invertebrate drift – a review. Hydrobiologia 166:77–93

    Article  Google Scholar 

  • Brock TCM (2013) Priorities to improve the ecological risk assessment and management for pesticides in surface water. Integr Environ Assess Manag 9:e64–e74

    Article  CAS  Google Scholar 

  • Brock TCM, Crum SJH, Deneer JW, Heimbach F, Roijackers RMM, Sinkeldam JA (2004) Comparing aquatic risk assessment methods for the photosynthesis inhibiting herbicides metribuzin and metamitron. Environ Pollut 130:403–426

    Article  CAS  Google Scholar 

  • Brock TCM, Arts GHP, Maltby L, Van den Brink PJ (2006) Aquatic risks of pesticides, ecological protection goals, and common aims in European Union Legislation. Integr Environ Assess Manag 2:e20–e46

    Article  Google Scholar 

  • Brock TCM, Van Solomon KR, Wijngaarden R, Maltby L (2008) Temporal extrapolation in ecological effect assessment of chemicals. In: Solomon KR, Brock TCM, De Zwart D, Dyer SD, Posthuma L, Richards SM, Sanderson H, Sibley PK, Van den Brink PJ (eds) Extrapolation practice for ecotoxicological effect characterization of chemicals. CRC Press, Boca Raton, FL, pp 187–221

    Google Scholar 

  • Brock TCM, Roessink I, Belgers JDM, Bransen F, Maund SJ (2009) Impact of a benzoyl urea insecticide on aquatic macro-invertebrates in ditch mesocosms with and without non-sprayed sections. Environ Toxicol Chem 28:2191–2205

    Article  CAS  Google Scholar 

  • Brock T, Arts G, Belgers D, Van Rhenen-Kersten C (2010a) Ecological characterization of drainage ditches in the Netherlands to evaluate pesticide-stress. In: Brock TCM, Alix A, Brown CD, Capri E, Gottesbüren BFF, Heimbach F, Lythgo CM, Schulz R, Streloke E (eds) Linking aquatic exposure and effects in the risk assessment of plant protection products. Taylor and Francis Group, London, pp 269–287

    Google Scholar 

  • Brock TCM, Belgers JDM, Roessink I, Cuppen JGM, Maund SJ (2010b) Macroinvertebrate responses to insecticide application between sprayed and adjacent non-sprayed ditch sections of different sizes. Environ Toxicol Chem 29:1994–2008

    CAS  Google Scholar 

  • Brooker MP, Edwards RW (1973) Effects of the herbicide paraquat on the ecology of a reservoir I. Botanical and chemical aspects. Freshwater Biol 3:157–175

    Article  Google Scholar 

  • Brooks SS, Boulton AJ (1991) Recolonization dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Aust J Mar Freshw Res 42:295–308

    Article  Google Scholar 

  • Burton GA, De Zwart D, Diamond J, Dyer S, Kapo KE, Liess M (2012) Making ecosystem reality checks the status quo. Environ Toxicol Chem 31:459–468

    Article  CAS  Google Scholar 

  • Caquet T, Hanson ML, Roucaute M, Graham DW, Lagadic L (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. II. Benthic macroinvertebrate responses. Environ Toxicol Chem 26:1280–1290

    Article  CAS  Google Scholar 

  • Chadwick JW, Canton SP, Dent RL (1986) Recovery of benthic invertebrate communities in silver bow creek, montana, following improved metal mine waste-water treatment. Water Air Soil Pollut 28:427–438

    Google Scholar 

  • Cherry DS, Larrick SR, Guthrie RK, Davis EM, Sherberger FF (1979) Recovery of invertebrate and vertebrate populations in a coal ash stressed drainage system. J Fish Res Board Can 36:1089–1096

    Article  Google Scholar 

  • Christman VD, Voshell JR (1993) Changes in the benthic macroinvertebrate community in 2 years of colonization of new experimental ponds. Int Rev Gesamten Hydrobiol 78:481–491

    Article  Google Scholar 

  • Churchel MA, Batzer DP (2006) Recovery of aquatic macroinvertebrate communities from drought in Georgia Piedmont headwater streams. Am Midl Nat 156:259–272

    Article  Google Scholar 

  • Collier KJ, Quinn JM (2003) Land-use influences macroinvertebrate community response following a pulse disturbance. Freshwater Biol 48:1462–1481

    Article  Google Scholar 

  • Corbet PS (1980) Biology of Odonata. Ann Rev Entomol 25:189–217

    Article  Google Scholar 

  • Cowx IG, Young WO, Hellawell JM (1984) The influence of drought on the fish and invertebrate populations of an upland stream in Wales. Freshwater Biol 14(2):165–177

    Article  Google Scholar 

  • Cuffney TF, Wallace JB, Webster JR (1984) Pesticide manipulation of a headwater stream: invertebrate responses and their significance for ecosystem processes. Freshwater Invertebr Biol 3:153–170

    Article  Google Scholar 

  • Danell K, Sjoberg K (1982) Successional patterns of plants, invertebrates and ducks in a man-made lake. J Appl Ecol 19:395–409

    Article  Google Scholar 

  • Davey AJH (2007) Fish community responses to drying disturbances in an intermittent stream: a landscape perspective. Freshwater Biol 52(9):1719–1733

    Article  Google Scholar 

  • Detenbeck NE, Devore PW, Niemi GJ, Lima A (1992) Recovery of temperate-stream fish communities from disturbance – a review of case-studies and synthesis of theory. Environ Manage 16:33–53

    Article  Google Scholar 

  • Diamond JM, Bower W, Gruber D (1993) Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River. Environ Manage 17(2):225–238

    Article  Google Scholar 

  • Doeg TJ, Lake PS, Marchant R (1989) Colonization of experimentally disturbed patches by stream macroinvertebrates in the Acheron river, Victoria. Aust J Ecol 14:207–220

    Article  Google Scholar 

  • Dosdall LM, Lehmkuhl DM (1989) The impact of methoxychlor treatment of the Saskatchewan river system on artificial substrate populations of aquatic insects. Environ Pollut 60:209–222

    Article  CAS  Google Scholar 

  • Dostine PL, Paltridge RM, Humphrey CL, Boulton AJ (1997) Macroinvertebrate recolonization after re-wetting of a tropical seasonally-flowing stream (Magela creek, Northern Territory, Australia). Mar Freshwater Res 48:633–645

    Article  Google Scholar 

  • EC (European Commission) (2000) Directive 2000/60/EC of the European parliament and the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. J Eur Union L 327:1–72

    Google Scholar 

  • EC (European Commission) (2009) Regulation (EC) No 1107/2009 of the European parliament and the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. J Eur Union L 309:1–50

    Google Scholar 

  • EC (European Commission) (2011) Technical guidance document for deriving environmental quality standards. Guidance document No. 27. Common implementation strategy for the water framework directive (2000/60/EC). Technical report – 2011 – 055, p 203

    Google Scholar 

  • EFSA (European Food Safety Authority) (2010) Scientific opinion on the development of specific protection goal options for environmental risk assessment of pesticides, in particular in relation to the revision of the Guidance Documents on Aquatic and Terrestrial Ecotoxicology (SANCO/3268/2001 and SANCO/10329/2002). EFSA J 8(1):1821, 55 pp

    Google Scholar 

  • EFSA (European Food Safety Authority) (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J 11(7):3290

    Google Scholar 

  • Eichler LW, Bombard RT, Sutherland JW, Boylen CW (1995) Recolonization of the littoral zone by macrophytes following the removal of benthic barrier material. J Aquat Plant Manage 33:51–54

    Google Scholar 

  • Fairchild WL, Eidt DC (1993) Perturbation of the aquatic invertebrate community of acidic bog ponds by the insecticide fenitrothion. Arch Environ Contam Toxicol 25:170–183

    Article  Google Scholar 

  • Fairchild JF, Dwyer FJ, Lapoint TW, Burch SA, Ingersoll CG (1990) Evaluation of a laboratory-generated noec for linear alkylbenzene sulfonate in outdoor experimental streams, Symposium on surfactants and their environmental safety, at the 11th annual meeting of the society of environmental toxicology and chemistry. Society of Environmental Toxicology and Chemistry, Arlington, VA, pp 1763–1775

    Google Scholar 

  • Fisher SG, Gray LJ, Grimm NB, Busch DE (1982) Temporal succession in a desert stream ecosystem following flash flooding. Ecol Monogr 52:93–110

    Article  CAS  Google Scholar 

  • Flory EA (1999) The role of competition in invertebrate community development in a recently formed stream in Glacier Bay National Park, Alaska. In: Milner AM (Hrsg.). Aquat Ecol 33(2):175–184

    Article  Google Scholar 

  • Flory EA, Milner AM (1999) Influence of riparian vegetation on invertebrate assemblages in a recently formed stream in Glacier Bay National Park, Alaska. J N Am Benthol Soc 18:261–273

    Article  Google Scholar 

  • Focks A, Luttik R, Zorn M, Brock T, Roex E, Van den Brink PJ (2014a) A simulation model study on effects of exposure to a combination of pesticides used in an orchard and tuber crop on the recovery time of a vulnerable aquatic invertebrate. Environ Toxicol Chem. doi:10.1002/etc.2502

    Google Scholar 

  • Focks A, Ter Horst M, Van den Berg E, Baveco H, Van den Brink PJ (2014b) Integrating chemical fate and population-level effect models for pesticides at landscape scale: New options for risk assessment. Ecol Model 280:102–116

    Article  CAS  Google Scholar 

  • FOCUS (Forum for the coordination of pesticide fate models and their use) (2001) FOCUS surface water scenarios in the EU evaluation process under 91/414/EEC. Report of the FOCUS working group on surface water scenarios, EC document reference SANCO/4802/2001-rev.2, p 245

    Google Scholar 

  • FOCUS (Forum for the coordination of pesticide fate models and their use) (2007) Landscape and mitigation factors in aquatic risk assessment. Volume 1. Extended summary and recommendations. Report of the FOCUS working group on landscape and mitigation factors in ecological risk assessment, EC document reference SANCO/10422/2005v2.0, p 169

    Google Scholar 

  • Frisch D, Green AJ (2007) Copepods come in first: rapid colonization of new temporary ponds. Fund Appl Limnol 168(4):289–297

    Article  Google Scholar 

  • Fuller RL, LaFave C, Anastasi M, Molina J, Salcedo H, Ward S (2008) The role of canopy cover on the recovery of periphyton and macroinvertebrate communities after a month-long flood. Hydrobiologia 598:47–57

    Article  Google Scholar 

  • Galic N, Baveco HM, Hengeveld GM, Thorbek P, Bruns E, Van den Brink PJ (2012) Simulating population recovery of an aquatic isopod: effects of timing of stress and landscape structure. Environ Pollut 163:91–99

    Article  CAS  Google Scholar 

  • Galic N, Hengeveld GM, Van den Brink PJ, Schmolke A, Thorbek A, Bruns E, Baveco HM (2013) Persistence of aquatic insects across managed landscapes: effects of landscape permeability on recolonization and population recvert. PLoS One 8:e54584

    Article  CAS  Google Scholar 

  • O´Halloran S, Liber K, Gangl JA, Knuth ML (1999) Effects of repeated exposure to 4-nonylphenol on the zooplankton community in littoral enclosures. Environ Toxicol Chem 18(3):376–385

    Article  Google Scholar 

  • Gergs A (2006) Untersuchungen zur Habitatbindung aquatischer Wanzen und Käfer in stehenden Kleingewässern von Heide- und Niedermoorgebieten des linken Niederrheins – Edition Umweltforschung 36, Shaker, p 160

    Google Scholar 

  • Gergs A, Classen S, Hommen U, Preuss TG (2011) Identification of realistic worst case aquatic macroinvertebrate species for prospective risk assessment using the trait concept. Environ Sci Pollut Res 18:1316–1323

    Article  Google Scholar 

  • Gergs A, Preuss TG, Palmqvist A (2014) Double trouble at high density: cross-level test of resource-related adaptive plasticity and crowding-related fitness. PLoS One 9, e91503

    Article  CAS  Google Scholar 

  • Gerritsen J, Patten BC (1985) System-theory formulation of ecological disturbance. Ecol Model 29:383–397

    Article  Google Scholar 

  • Giddings J, Brock TCM, Heger W, Heimbach F, Maund SJ, Norman S, Ratte H-T, Schäfers C, Streloke M (eds) (2002) Community level aquatic system studies – interpretation criteria. SETAC, Pensacola, FL, p 60

    Google Scholar 

  • Gray LJ (1981) Species composition and life histories of aquatic insects in a lowland sonoran desert stream. Am Midl Nat 106:229–242

    Article  Google Scholar 

  • Greathouse EA, March JG, Pringle CM (2005) Recovery of a tropical stream after a harvest-related chlorine poisoning event. Freshwater Biol 50:603–615

    Article  CAS  Google Scholar 

  • Guiral D, Arfi R, Bouvy M, Pagano M, Saintjean L (1994) Ecological organization and succession during natural recolonization of a tropical pond. Hydrobiologia 294:229–242

    Article  Google Scholar 

  • Hairston NG Jr, Cáceres CE (1996) Distribution of crustacean diapause: Micro and macroevolutionary pattern and process. Hydrobiologia 320:27–44

    Article  Google Scholar 

  • Hanson DL, Waters TF (1974) Recovery of standing crop and production rate of a brook trout population in a flood-damaged stream. Trans Am Fish Soc 103:431–439

    Article  Google Scholar 

  • Hanson ML, Graham DW, Babin E, Azam D, Coutellec MA, Knapp CW, Lagadic L, Caquet T (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environ Toxicol Chem 26(6):1265–1279

    Article  CAS  Google Scholar 

  • Harrel RC (1985) Effects of a crude-oil spill on water-quality and macrobenthos of a southeast texas stream. Hydrobiologia 124:223–228

    Article  Google Scholar 

  • Harriman R, Morrison BRS (1982) Ecology of streams draining forested and non-forested catchments in an area of central scotland subject to acid precipitation. Hydrobiologia 88:251–263

    Article  CAS  Google Scholar 

  • Hatakeyama S, Fukushima S, Kasai F, Shiraishi H (1994) Assessment of herbicide effects on algal production in the Kokai River (Japan) using a model stream and Selenastrum bioassay. Ecotoxicology 3(2):143–156

    Article  CAS  Google Scholar 

  • Hawkins CP, Sedell JR (1990) The role of refugia in the recolonization of streams devastated by the 1980 eruption of Mount St Helens. Northwest Sci 64:271–274

    Google Scholar 

  • Heckman CW (1981) Long-term effects of intensive pesticide applications on the aquatic community in orchard drainage ditches near Hamburg, Germany. Arch Environ Contam Toxicol 10:393–426

    Article  CAS  Google Scholar 

  • Heneghan PA, Biggs J, Jepson PC, Kedwards T, Maund SJ, Sherratt TN, Shillabeer N, Stickland TR, Williams P (1999) Pond-FX: ecotoxicology from pH to population recovery. Oregon State University, Corvallis, OR

    Google Scholar 

  • Hommen U, Baveco JM, Galic N, Van den Brink P (2010) Potential application of ecological models in the European environmental risk assessment of chemicals: I. Review of protection goals in EU directives. Integr Environ Assess Manag 6:325–337

    Article  CAS  Google Scholar 

  • Ibrahim L, Preuss TG, Schaeffer A, Hommen U (2014) A contribution to the identification of representative vulnerable fish species for pesticide risk assessment in Europe — a comparison of population resilience using matrix models. Ecol Model 280:65–75

    Article  CAS  Google Scholar 

  • Ide FP (1967) Effects of forest spraying with DDT on aquatic insects of salmon streams in New Brunswick. J Fish Res Board Can 24:769–805

    Article  Google Scholar 

  • Jackson DJ (1952) Observations on the capacity for flight of water beetles. Proc R Entomol Soc Lond 27:57–70

    Google Scholar 

  • Kattwinkel M, Römbke J, Liess M (2012) Ecological recovery of populations of vulnerable species driving the risk assessment of pesticides. EFSA Support Publ EN-338:98

    Google Scholar 

  • Kaufman LH (1982) Stream Aufwuchs accumulation: disturbance frequency and stress resistance and resilience. Oecologia 52:57–63

    Article  Google Scholar 

  • Koskenniemi E (1994) Colonization, succession and environmental-conditions of the macrozoobenthos in a regulated, polyhumic reservoir, Western Finland. Int Rev Gesamten Hydrobiol 79:521–555

    Article  Google Scholar 

  • Kulkarni D, Gergs A, Hommen U, Ratte HT, Preuss TG (2013) A plea for the use of copepods in freshwater ecotoxicology. Environ Sci Pollut Res 20:75–85

    Article  CAS  Google Scholar 

  • Lahr J (1998) An ecological assessment of the hazard of eight insecticides used in desert locust control, to invertebrates in temporary ponds in the Sahel. Aquat Ecol 32:153–162

    Article  CAS  Google Scholar 

  • Layton RJ, Voshell JR (1991) Colonization of new experimental ponds by benthic macroinvertebrates. Environ Entomol 20(1):110–117

    Article  Google Scholar 

  • Leeuwangh P, Brock TCM, Kersting K (1994) An evaluation of four types of freshwater model ecosystem for assessing the hazard of pesticides. Hum Exp Toxicol 13:888–899

    Article  CAS  Google Scholar 

  • Lelek A, Köhler C (1990) Restoration of fish communities of the Rhine river two years after a heavy pollution wave. Regul River 5:57–66

    Article  Google Scholar 

  • Liber K, Kaushik N, Solomon KR, Carey JH (1992) Experimental designs for aquatic mesocosm studies: a comparison of the “anova” and “regression” design for assessing the impact of tetrachlorophenol on zooplankton populations in limnocorrals. Environ Toxicol Chem 11(1):61–77

    CAS  Google Scholar 

  • Liess M, Foit K (2010) Intraspecific competition delays recovery of population structure. Aquat Toxicol 97:15–22

    Article  CAS  Google Scholar 

  • Liess M, Schulz R (1999) Linking insecticide contamination and population response in an agricultural stream. Environ Toxicol Chem 18:1948–1955

    Article  CAS  Google Scholar 

  • Liess M, Von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965

    Article  CAS  Google Scholar 

  • Liess M, Schulz R, Berenzen N, Nanko-Drees J. Wogram J (2001) Berlin: Umweltbundesamt, 2001. Pesticide contamination and macroinvertebrate communities in running waters in agricultural areas. Report, p 227

    Google Scholar 

  • Lonzarich DG, Warren MR, Lonzarich MRE (1998) Effects of habitat isolation on the recovery of fish assemblages in experimentally defaunated stream pools in Arkansas. Can J Fish Aquat Sci 55(9):2141–2149

    Article  Google Scholar 

  • Lopez-Mancisidor P, Carbonell G, Fernandez C, Tarazona JV (2008a) Ecological impact of repeated applications of chlorpyrifos on zooplankton community in mesocosms under Mediterranean conditions. Ecotoxicology 17:811–825

    Article  CAS  Google Scholar 

  • Lopez-Mancisidor P, van den Brink PJ, Crum SJH, Maund SJ, Carbonell G, Brock TCM (2008b) Responses of zooplankton in lufenuron-stressed experimental ditches in the presence or absence of uncontaminated refuges. Environ Toxicol Chem 27:1317–1331

    Article  CAS  Google Scholar 

  • Louette G, De Meester L (2004) Rapid colonization of a newly created habitat by cladocerans and the initial build-up of a Daphnia-dominated community. Hydrobiologia 513:245–249

    Article  Google Scholar 

  • Macan TT (1938) Evolution of aquatic habitats with special reference to the distribution of Corixidae. J Anim Ecol 7(1):1–19

    Article  Google Scholar 

  • Mackay RJ (1992) Colonization by lotic macroinvertebrates – a review of processes and patterns. Can J Fish Aquat Sci 49:617–628

    Article  Google Scholar 

  • Malmqvist B, Rundle S, Bronmark C, Erlandsson A (1991) Invertebrate colonization of a new, man-made stream in Southern Sweden. Freshwater Biol 26:307–324

    Article  Google Scholar 

  • Matthaei CD, Uehlinger U, Meyer EI, Frutiger A (1996) Recolonization by benthic invertebrates after experimental disturbance in a Swiss prealpine river. Freshwater Biol 35:233–248

    Article  Google Scholar 

  • Matthaei CD, Werthmuller D, Frutiger A (1997) Invertebrate recovery from a bed-moving spate: the role of drift versus movements inside or over the substratum. Arch Hydrobiol 140:221–235

    Google Scholar 

  • Maund SJ, Williams P, Whitfield M, Biggs J, Kedwards TJ, Sherratt TN, Shillabeer N (2009) The influence of simulated immigration and chemical persistence on reovery of macroinvertebrates from cypermethrin and 3,4-dichloroaniline exposure in aquatic microcosms. Pest Manag Sci 65:678–687

    Article  CAS  Google Scholar 

  • May R (1975) Stability in ecosystems: some comments. In: Van Dobben WH, Lowe McConnell RH (eds) Unifying concepts in ecology. Junk Publishers, The Hague, pp 161–169

    Chapter  Google Scholar 

  • Mazerolle MJ, Poulin M, Lavoie C, Rochefort L, Desrochers A, Drolet B (2006) Animal and vegetation patterns in natural and man-made bog pools: implications for restoration. Freshwater Biol 51:333–350

    Article  Google Scholar 

  • McClure ND (1985) A summary of environmental-issues and findings – Tennessee-Tombigbee waterway. Environ Geol Water Sci 7:109–124

    Article  Google Scholar 

  • McDonald G, Buchanan GA (1981) The mosquito and predatory insect fauna inhabiting fresh-water ponds, with particular reference to culex annulirostris skuse (Diptera, Culicidae). Aust J Ecol 6:21–27

    Article  Google Scholar 

  • Meijering MPD (1971) Die Gammarus-Fauna der Schlitzerländer Fließgewässer. Arch Hydrobiol 68:575–608

    Google Scholar 

  • Meijering MPD (1977) Quantitative relationships between drift and upstream migration of Gammarus fossarum Koch, 1835. Crustaceana 4:128–135

    Google Scholar 

  • Melaas CL, Zimmer KD, Butler MG, Hanson MA (2001) Effects of rotenone on aquatic invertebrate communities in prairie wetlands. Hydrobiologia 459:177–186

    Article  Google Scholar 

  • Meyerhoff RD (1991) Post-eruption recovery and secondary production of grazing insects in two streams near Mt. Oregon State University, St. Helens, OR, p 233

    Google Scholar 

  • Miller AC (2006) Experimental gravel bar habitat creation in the Tombigbee River, Mississippi, ERDC/TN EMRRP-ER

    Google Scholar 

  • Miller MC, Alexander V, Barsdate R (1978) The effects of oil spills on phytoplankton in an arctic lake and ponds. Artic 31(3):192–218

    CAS  Google Scholar 

  • Milner AM (1987) Colonization and ecological development of new streams in Glacier Bay National Park, Alaska. Freshwater Biol 18:53–70

    Article  Google Scholar 

  • Milner AM (1994) Colonization and succession of invertebrate communities in a new stream in Glacier-Bay-National-Park, Alaska. Freshwater Biol 32:387–400

    Article  Google Scholar 

  • Milner AM, Knudsen EE, Soiseth C, Robertson AL, Schell D, Phillips IT, Magnusson K (2000) Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska, USA. Can J Fish Aquat Sci 57(11):2319–2335

    Article  Google Scholar 

  • Mitchell CP (1980) Control of water weeds by grass carp in two small lakes. New Zeal J Mar Fresh 14(4):381–390

    Article  Google Scholar 

  • Mohr S, Schröder H, Feibicke M, Berghahn R, Arp W, Nicklisch A (2008) Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms. Aquat Toxicol 90(2):109–120

    Article  CAS  Google Scholar 

  • Molles MC (1985) Recovery of a stream invertebrate community from a flash-flood in Tesuque Creek, New-Mexico. Southwest Nat 30:279–287

    Article  Google Scholar 

  • Morrison BRS (1990) Recolonisation of 4 small streams in central scotland following drought conditions in 1984. Hydrobiologia 208:261–267

    Article  Google Scholar 

  • Niemi GJ, Devore P, Detenbeck N, Taylor D, Lima A, Pastor J, Yount JD, Naiman RJ (1990) Overview of case-studies on recovery of aquatic systems from disturbance. Environ Manage 14:571–587

    Article  Google Scholar 

  • Nienstedt KM, Brock TCM, van Wensem J, Montforts M, Hart A, Aagaard A, Alix A, Boesten J, Bopp SK, Brown C, Capri E, Forbes V, Koepp H, Liess M, Luttik R, Maltby L, Sousa JP, Streissl F, Hardy AR (2012) Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Sci Total Environ 415:31–38

    Article  CAS  Google Scholar 

  • Olmsted LL, Cloutman DG (1974) Repopulation after a fish kill in mud creek, Washington County, Arkansas following pesticide pollution. Trans Am Fish Soc 103(1):79–87

    Article  Google Scholar 

  • Otermin A, Basaguren A, Pozo J (2002) Re-colonization by the macroinvertebrate community after a drought period in a first-order stream (Aguera Basin, Northern Spain). Limnetica 21:117–128

    Google Scholar 

  • Otto C, Sjöström P (1986) Behaviour of drifting insect larvae. Hydrobiologia 131:77–86

    Article  Google Scholar 

  • Park RA, Clough JS, Wellman MC (2008) AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecol Model 213(1):1–15

    Article  CAS  Google Scholar 

  • Peterson WT (2001) Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance. Hydrobiologia 453(454):91–105

    Article  Google Scholar 

  • Peterson JT, Bayley PB (1993) Colonization rates of fishes in experimentally defaunated warmwater streams. Trans Am Fish Soc 122(2):199–207

    Article  Google Scholar 

  • Peterson CG, Stevenson RJ (1992) Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73(4):1445–1461

    Article  Google Scholar 

  • Pires AM, Cowx IG, Coelho MM (2000) Benthic macroinvertebrate communities of intermittent streams in the middle reaches of the Guadiana Basin (Portugal). Hydrobiologia 435:167–175

    Article  Google Scholar 

  • Poff NE, Ward JF (1990) Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environ Manage 14:629–645

    Article  Google Scholar 

  • Preuss TG, Hammers-Wirtz M, Ratte HT (2010) The potential of individual based population models to extrapolate effects measured at standardized test conditions to relevant environmental conditions-an example for 3,4-dichloroaniline on Daphnia magna. J Environ Monit 12(11):2070–2079

    Article  CAS  Google Scholar 

  • Rand GM, Clark JR, Holmes CM (2000) Use of outdoor freshwater pond microcosms: ii. responses of biota to pyridaben. Environ Toxicol Chem 19(2):396–404

    Article  CAS  Google Scholar 

  • Reice SR, Wissmar RC, Naiman RJ (1990) Disturbance regimes, resilience, and recovery of animal communities and habitats in lotic ecosystems. Environ Manage 14:647–659

    Article  Google Scholar 

  • Resh VH (1982) Age structure alteration in a caddisfly population after habitat loss and recovery. Oikos 38:280–284

    Article  Google Scholar 

  • Robinson CT, Rushforth SR (1987) Effects of physical disturbance and canopy cover on attached diatom community structure in an Idaho stream. Hydrobiologia 154:49–59

    Article  Google Scholar 

  • Roessink I, Arts GHP, Belgers JDM, Bransen F, Maund SJ, Brock TCM (2005) Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic state. Environ Toxicol Chem 24:1684–1696

    Article  CAS  Google Scholar 

  • Ryon GM (1992) Ecological effects of contaminants in McCoy Branch, 1989–1990. ORNL/TM-11926. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Ryon GM (1996) Ecological effects of contaminants in McCoy Branch, 1991–1993. ORNL/TM-13125. Oak Ridge National Laboratory, Oak Ridge, TN

    Book  Google Scholar 

  • Sagar PM (1983) Invertebrate recolonisation of previously dry channels in the Rakaia River. New Zeal J Mar Fresh 377–386

    Google Scholar 

  • Sanderson H, Laird B, Pope L, Brain R, Wilson C, Johnson D, Bryning G, Pregrine AS, Boxall A, Solomon K (2007) Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol 85:229–240

    Article  CAS  Google Scholar 

  • Savage AA (1989) Adults of the British aquatic Hemiptera Heteroptera: a key with ecological notes. Scientific Publication No. 50: Freshwater Biological Association.

    Google Scholar 

  • Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382:272–285

    Article  CAS  Google Scholar 

  • Schäfers C, Hommen U, Dembinski M, Gonzalez-Valero JF (2006) Aquatic macroinvertebrates in the Altes Land, an intensely used orchard region in Germany: correlation between community structure and potential for pesticide exposure. Environ Toxicol Chem 25:3275–3288

    Article  Google Scholar 

  • Schmidl J (1997) Wasserkäfer-Assoziationen als Indikatoren für Qualität und Sukzessionsstadium stehender Gewässer: Prodromus eines Indikatorsystems für stehende Gewässer. Naturschutzzentrum Wasserschloss Mitwitz-Materialien 1(97):41–46

    Google Scholar 

  • Schriever CA, Hansler-Ball M, Holmes C, Maund S, Liess M (2007) Agricultural intensity and landscape structure: influences on the macroinvertebrate assemblages of small streams in northern Germany. Environ Toxicol Chem 26:346–357

    Article  CAS  Google Scholar 

  • Schulz R, Liess M (1999) Validity and ecological relevance of an active in situ bioassay using Gammarus pulex and Limnephilus lunatus. Environ Toxicol Chem 18:2243–2250

    Article  CAS  Google Scholar 

  • Scrimgeour GJ, Davidson RJ, Davidson JM (1988) Recovery of benthic macroinvertebrate and epilithic communities following a large flood, in an unstable, braided, new-zealand river. New Zeal J Mar Fresh 22:337–344

    Article  Google Scholar 

  • Sedell JR, Reeves GH, Hauer FR, Stanford JA, Hawkins CP (1990) Role of refugia in recovery from disturbances: Modern fragmented and disconnected river systems. Environ Manage 14:711–724

    Article  Google Scholar 

  • Sheldon AL, Meffe GK (1994) Short-term recolonization by fishes of experimentally defaunated pools of a coastal plain stream. Copeia 4:828–837

    Google Scholar 

  • Smith JG (2003) Recovery of the benthic macroinvertebrate community in a small stream after long-term discharges of fly ash. Environ Manage 32:77–92

    Article  Google Scholar 

  • Solimini AG, Ruggiero A, Bernardini V, Carchini G (2003) Temporal pattern of macroinvertebrate diversity and production in a new man made shallow lake. Hydrobiologia 506:373–379

    Article  Google Scholar 

  • Solomon KR, Stephenson GL, Kaushik NK (1989) Effects of methoxychlor on zooplankton in freshwater enclosures: influence of enclosure size and number of applications. Environ Toxicol Chem 8(8):659–669

    Article  CAS  Google Scholar 

  • Solomon KR, Brock TCM, De Zwart D, Dyer SD, Posthuma L, Richards SM, Sanderson H, Sibley PK, Van den Brink PJ (eds) (2008) Extrapolation practice for ecotoxicological effect characterization of chemicals. CRC Press, Boca Raton, FL, p 380

    Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Specht WL, Cherry DS, Lechleitner RA, Cairns J (1984) Structural, functional, and recovery responses of stream invertebrates to fly-ash effluent. Can J Fish Aquat Sci 41:884–896

    Article  CAS  Google Scholar 

  • Steinmann AD, McIntire CD (1990) Recovery of lotic periphyton communities after disturbance. Environ Manage 14(5):589–604

    Article  Google Scholar 

  • Suter GW, Norton SB, Cormier SM (2010) The science and philosophy of a method for assessing environmental causes. Hum Ecol Risk Assess 16:19–34

    Article  CAS  Google Scholar 

  • Swift MC (2002) Stream ecosystem response to, and recovery from, experimental exposure to selenium. J Aquat Ecosyst Stress Recov 9:159–184

    Article  CAS  Google Scholar 

  • Tanner CC, Wells RDS, Mitchell CP (1990) Re-establishment of native macrophytes in Lake Parkinson following weed control by grass carp. New Zeal J Mar Fresh 24:181–186

    Article  Google Scholar 

  • Thorp JH, Black AR, Haag KH, Wehr JD (1994) Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Can J Fish Aquat Sci 51:1634–1643

    Article  Google Scholar 

  • Tidou AS, Moreteau JC, Ramade F (1992) Effects of lindane and deltamethrin on zooplankton communities of experimental ponds. Hydrobiologia 232:157–168

    Article  CAS  Google Scholar 

  • Tikkanen P, Laasonen P, Muotka T, Huhta A, Kuusela K (1994) Short-term recovery of benthos following disturbance from stream habitat rehabilitation. Hydrobiologia 273:121–130

    Article  Google Scholar 

  • Twisk W, Noordervliet MAW, Ter Keurs WJ (2003) The nature value of the ditch vegetation in peat areas in relation to farm management. Aquat Ecol 37:191–209

    Article  Google Scholar 

  • Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biol 44:563–568

    Google Scholar 

  • Van de Meutter F, Stoks R, de Meester L (2008) Size-selective dispersal of Daphnia resting eggs by backswimmers (Notonecta maculata). Biol Lett 4:494–496

    Article  Google Scholar 

  • Van den Brink PJ, van Wijngaarden RPA, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban 4E (a.i. chlorpyrifos) in outdoor experimental ditches. II. Invertebrate community responses. Environ Toxicol Chem 15(7):1143–1153

    Article  Google Scholar 

  • Van den Brink PJ, Baveco JM, Verboom J, Heimbach F (2007) An individual-based approach to model spatial population dynamics of invertebrates in aquatic ecosystems after pesticide contamination. Environ Toxicol Chem 26:2226–2236

    Article  Google Scholar 

  • Van Wijngaarden RPA, Brock TCM, Van den Brink PJ, Gylstra R, Maund SJ (2006) Ecological effects of spring and late summer applications of lambdacyhalothrin in freshwater microcosms. Arch Environ Contam Toxicol 50:220–239

    Article  CAS  Google Scholar 

  • Van Wijngaarden RPA, Barber I, Brock TCM (2009) Effects of the pyrethroid insecticide gamma-cyhalothrin on aquatic invertebrates in laboratory and outdoor microcosm tests. Ecotoxicology 18:211–224

    Article  CAS  Google Scholar 

  • Wallace JB (1990) Recovery of lotic macroinvertebrate communities from disturbance. Environ Manage 14:605–620

    Article  Google Scholar 

  • Wallace JB, Lugthart GJ, Cuffney TF, Schurr GA (1989) The impact of repeated insecticidal treatments on drift and benthos of a headwater stream. Hydrobiologia 179:135–147

    Article  CAS  Google Scholar 

  • Wang M, Grimm V (2010) Population models in pesticide risk assessment: lessons for assessing population-level effects, recovery, and alternative exposure scenarios from modeling a small mammal. Environ Toxicol Chem 29(6):1292–1300

    CAS  Google Scholar 

  • Ward S, Arthington AH, Pusey BJ (1995) The effects of a chronic application of chlorpyrifos on the macroinvertebrate fauna in an outdoor artificial stream system – species responses. Ecotoxicol Environ Safe 30:2–23

    Article  CAS  Google Scholar 

  • Weng ZY, Mookerji N, Mazumder A (2001) Nutrient-dependent recovery of Atlantic salmon streams from a catastrophic flood. Can J Fish Aquat Sci 58:1672–1682

    Article  CAS  Google Scholar 

  • Whiles MR, Wallace JB (1992) First-year benthic recovery of a headwater stream following a 3-year insecticide-induced disturbance. Freshwater Biol 28:81–91

    Article  Google Scholar 

  • Whiles MR, Wallace JB (1995) Macroinvertebrate production in a headwater stream during recovery from anthropogenic disturbance and hydrologic extremes. Can J Fish Aquat Sci 52:2402–2422

    Article  Google Scholar 

  • Yameogo L, Abban EK, Elouard JM, Traore K, Calamari D (1993) Effects of permethrin as Simulium larvicide on non-target aquatic fauna in an African river. Ecotoxicology 2:157–174

    Article  CAS  Google Scholar 

  • Yasuno M, Fukushima S, Hasegawa J, Shioyama F, Hatakeyama S (1982) Changes in the benthic fauna and flora after application of temephos to a stream on Mt Tsukuba. Hydrobiologia 89:205–214

    Article  Google Scholar 

  • Yount JD, Niemi GJ (1990) Recovery of lotic communities and ecosystems from disturbance – a narrative review of case-studies. Environ Manage 14:547–569

    Article  Google Scholar 

  • Zwick P (1992) Fließgewässergefährdung durch Insektizide. Naturwissenschaften 79:437–442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Federal Environment Agency (UBA), Germany (Project-Number 3707 63 4001) and the CEFIC LRI Innovative Science Award. The contribution of Theo Brock was financially supported by project BO-20-002-001 of the Dutch Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Gergs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gergs, A. et al. (2016). Ecological Recovery Potential of Freshwater Organisms: Consequences for Environmental Risk Assessment of Chemicals. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 236. Reviews of Environmental Contamination and Toxicology, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-20013-2_5

Download citation

Publish with us

Policies and ethics