Skip to main content

Detail-Preserving PET Reconstruction with Sparse Image Representation and Anatomical Priors

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Abstract

Positron emission tomography (PET) reconstruction is an ill-posed inverse problem which typically involves fitting a high-dimensional forward model of the imaging process to noisy, and sometimes undersampled photon emission data. To improve the image quality, prior information derived from anatomical images of the same subject has been previously used in the penalised maximum likelihood (PML) method to regularise the model complexity and selectively smooth the image on a voxel basis in PET reconstruction. In this work, we propose a novel perspective of incorporating the prior information by exploring the sparse property of natural images. Instead of a regular voxel grid, the sparse image representation jointly determined by the prior image and the PET data is used in reconstruction to leverage between the image details and smoothness, and this prior is integrated into the PET forward model and has a closed-form expectation maximisation (EM) solution. Simulations show that the proposed approach achieves improved bias versus variance trade-off and higher contrast recovery than the current state-of-the-art methods, and preserves the image details better. Application to clinical PET data shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, P.: Bayesian reconstructions from emission tomography data using a modified em algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990)

    Article  Google Scholar 

  2. Leahy, R., Yan, X.: Incorporation of anatomical MR data for improved functional imaging with PET. In: Colchester, A., Hawkes, D. (eds.) IPMI 1991. Lecture Notes in Computer Science, vol. 511, pp. 105–120. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  3. Baete, K., Nuyts, J., Van Paesschen, W., Suetens, P., Dupont, P.: Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy. IEEE Trans. Med. Imaging 23(4), 510–519 (2004)

    Article  Google Scholar 

  4. Bowsher, J., Yuan, H., Hedlund, L., Turkington, T., Akabani, G., Badea, A., Kurylo, W., Wheeler, C., Cofer, G., Dewhirst, M., Johnson, G.: Utilizing MRI information to estimate F18-FDG distributions in rat flank tumors. In: Conference Record of the 2004 Nuclear Science Symposium, vol. 4, pp. 2488–2492. IEEE (Oct 2004)

    Google Scholar 

  5. Vunckx, K., Atre, A., Baete, K., Reilhac, A., Deroose, C., Van Laere, K., Nuyts, J.: Evaluation of three MRI-based anatomical priors for quantitative pet brain imaging. IEEE Trans. Med. Imaging 31(3), 599–612 (2012)

    Article  Google Scholar 

  6. Bai, B., Li, Q., Leahy, R.M.: Magnetic resonance-guided positron emission tomography image reconstruction. Semin. Nucl. Med. 43(1), 30–44 (2013)

    Article  Google Scholar 

  7. Wang, G., Qi, J.: Edge-preserving PET image reconstruction using trust optimization transfer. IEEE Trans. Med. Imaging 34(4), 930–939 (2015)

    Article  MathSciNet  Google Scholar 

  8. Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  9. Wang, G., Qi, J.: Direct estimation of kinetic parametric images for dynamic PET. Theranostics 3(10), 802–815 (2013)

    Article  Google Scholar 

  10. Nguyen, V.G., jin Lee, S.: Incorporating anatomical side information into PET reconstruction using nonlocal regularization. IEEE Trans. Image Process. 22(10), 3961–3973 (2013)

    Article  MathSciNet  Google Scholar 

  11. Wang, G., Qi, J.: PET image reconstruction using kernel method. IEEE Trans. Med. Imaging 34(1), 61–71 (2015)

    Article  Google Scholar 

  12. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  13. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 10–17, October 2003

    Google Scholar 

  14. Heinrich, M.P., Jenkinson, M., Papież, B.W., Glesson, F.V., Brady, S.M., Schnabel, J.A.: Edge- and detail-preserving sparse image representations for deformable registration of chest MRI and CT volumes. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 463–474. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  16. Dillencourt, M.B., Samet, H., Tamminen, M.: A general approach to connected-component labeling for arbitrary image representations. J. ACM 39(2), 253–280 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qi, J., Leahy, R.M.: Iterative reconstruction techniques in emission computed tomography. Phys. Med. Biol. 51(15), R541–R578 (2006)

    Article  Google Scholar 

  18. Tong, S., Shi, P.: Tracer kinetics guided dynamic PET reconstruction. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 421–433. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Gao, F., Liu, H., Jian, Y., Shi, P.: Dynamic dual-tracer PET reconstruction. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 38–49. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Gunn, R.N., Gunn, S.R., Cunningham, V.J.: Positron emission tomography compartmental models. J. Cereb. Blood Flow Metab. 21(6), 635–652 (2001)

    Article  Google Scholar 

  21. Li, Z., Wu, X.M., Chang, S.F.: Segmentation using superpixels: A bipartite graph partitioning approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 789–796, June 2012

    Google Scholar 

  22. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 60–65, June 2005

    Google Scholar 

  23. Burgos, N., Cardoso, M., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., Barnes, A., Ahmed, R., Mahoney, J., Schott, J., Duncan, J., Atkinson, D., Arridge, S., Hutton, B., Ourselin, S.: Attenuation correction synthesis for hybrid pet-mr scanners: application to brain studies. IEEE Trans. Med. Imaging 33(12), 2332–2341 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

EPSRC (EP/H046410/1, EP/J020990/1, EP/K005278), the MRC (MR/J01107X/1), the NIHR Biomedical Research Unit (Dementia) at UCL and the National Institute for Health Research University College London Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact Initiative). Mattias Heinrich, Benjamin Irving, Carole Sudre, Michael Hütel, M. Jorge Cardoso, Pankaj Daga and Matthias Ehrhardt for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqing Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiao, J. et al. (2015). Detail-Preserving PET Reconstruction with Sparse Image Representation and Anatomical Priors. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics