Classifications of Elliptic Fibrations of a Singular K3 Surface

  • Marie José Bertin
  • Alice Garbagnati
  • Ruthi Hortsch
  • Odile Lecacheux
  • Makiko Mase
  • Cecília Salgado
  • Ursula Whitcher
Conference paper

DOI: 10.1007/978-3-319-17987-2_2

Part of the Association for Women in Mathematics Series book series (AWMS, volume 2)
Cite this paper as:
Bertin M.J. et al. (2015) Classifications of Elliptic Fibrations of a Singular K3 Surface. In: Bertin M., Bucur A., Feigon B., Schneps L. (eds) Women in Numbers Europe. Association for Women in Mathematics Series, vol 2. Springer, Cham

Abstract

We classify, up to automorphisms, the elliptic fibrations on the singular K3 surface X whose transcendental lattice is isometric to \(\langle 6\rangle \oplus \langle 2\rangle\).

MSC 2010:

Primary 14J28 14J27 Secondary 11G05 11G42 14J33 

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marie José Bertin
    • 1
  • Alice Garbagnati
    • 2
  • Ruthi Hortsch
    • 3
  • Odile Lecacheux
    • 1
  • Makiko Mase
    • 4
  • Cecília Salgado
    • 5
  • Ursula Whitcher
    • 6
  1. 1.Jussieu Institute of MathematicsPierre and Marie Curie UniversityParisFrance
  2. 2.Department of MathematicsUniversity of MilanMilanItaly
  3. 3.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Tokyo Metropolitan UniversityTokyoJapan
  5. 5.Institute for MathematicsFederal University of Rio de JaneiroRio de JaneiroBrazil
  6. 6.Department of MathematicsUniversity of Wisconsin-Eau ClaireEau ClaireUSA

Personalised recommendations