Skip to main content

Neuroimaging of the Human Brain in Adolescent Substance Users

  • Chapter
  • First Online:
Book cover Drug Abuse in Adolescence

Abstract

Adolescent substance misuse is a persistent international problem that impacts millions of adolescents worldwide and is associated with poor psychosocial, cognitive, and neurobiological outcomes. Recent advances in neuroimaging technology have allowed for a better understanding of the neurobiological effects of adolescent substance misuse. This chapter reviews recent evidence from neuroimaging studies investigating adolescent substance misuse (i.e., sMRI, DTI and fMRI) and identified that adolescent substance misuse is associated with widespread abnormalities in regional brain morphology, structural connectivity and brain function. These alterations were particularly marked in medial temporal, frontal-parietal and cerebellar regions. The research to date supports the notion that adolescent substance misuse is associated with adverse neurobiological outcomes that may persist throughout adulthood. This review emphasizes the utility of neuroimaging in investigating the possible neurobiological consequences of adolescent substance misuse and discusses clinical implications for neuroimaging research in the treatment of adolescent substance misuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lubman D, et al. Intervening early to reduce developmentally harmful substance use among youth populations. Med J Aust. 2007;187(7):S22–5.

    PubMed  Google Scholar 

  2. Toumbourou JW, et al. Interventions to reduce harm associated with adolescent substance use. Lancet. 2007;369:1391–401.

    Article  PubMed  Google Scholar 

  3. Johnston L, et al. Monitoring the future: national survey results on drug use. Institute for Social Research, Ann Arbor: The University of Michigan; 1975–2010, 2011.

    Google Scholar 

  4. Galduroz J, et al. Household survey on drug abuse in Brazil: study involving the 107 major cities of the country-2001. Addict Behav. 2005;30:545–56.

    Article  PubMed  Google Scholar 

  5. Forster L, Tannhauser M, Barros H. Drug use among street children in southern Brazil. Drug Alcohol Depend. 1996;43:57–62.

    Article  PubMed  Google Scholar 

  6. Musto DF. Drug abuse research in historical perspective. In: Committee on Opportunities in Drug Abuse Research, Editor. Pathways of addiction: opportunities in drug abuse research. 1996. p. 284–94.

    Google Scholar 

  7. Wilson W, et al. Brain morphological changes and early marijuana use. A MRI and PET study. J Addict Dis. 2000;19(1):1–22.

    Article  PubMed  Google Scholar 

  8. Pope H, et al. Early-Onset cannabis use and cognitive deficits: what is the nature of the association. Drug Alcohol Depend. 2003;69:303–10.

    Article  PubMed  Google Scholar 

  9. Yang Y, et al., Editors. Structural and functional neuroimaging methods: applications to substance abuse and addiction. West Sussex: Wiley-Blackwell; 2011.

    Google Scholar 

  10. Steinberg L, Morris A. Adolescent development. Annu Rev Psychol. 2001;52, 83–110.

    Google Scholar 

  11. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

    Article  PubMed  Google Scholar 

  12. Giedd J. The teen brain: insights from neuroimaging. J Adolesc Health. 2008;42:335–43.

    Article  PubMed  Google Scholar 

  13. Paus T. Mapping brain maturation and cognitive development during adolescence. Trends Cognit Sci. 2005;9(2):60–8.

    Article  Google Scholar 

  14. Steinberg L. Cognitive and affective development in adolescence. Trends Cognit Sci. 2005;9(2):69–74.

    Article  Google Scholar 

  15. Somerville LH, Jones RM, Casey BJ. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cognit. 2010;72(1):124–33.

    Article  Google Scholar 

  16. Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry. 2003;160(6):1041–52.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Niendam TA, et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognit, Affect Behav Neurosci. 2012;12(2):241–68.

    Google Scholar 

  18. Spear LP. Rewards, aversions and affect in adolescence: emerging convergences across laboratory animal and human data. Dev Cognit Neurosci. 2011;1(14):392–400.

    Google Scholar 

  19. Berridge CW. Noradrenergic modulation of arousal. Brain Res Rev. 2008;58(1):1–17.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lubman D, Yücel M. Adolescent substance use and the developing brain. Dev Med Child Neurol. 2008;50:76–80.

    Article  PubMed  Google Scholar 

  21. Luna B, Sweeney JA. The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Ann N Y Acad Sci. 2004;1021:296–309.

    Article  PubMed  Google Scholar 

  22. Bowen S, et al. The last decade of solvent research in animal models of abuse: mechanistic and behavioral studies. Neurotoxicol Teratol. 2006;28:636–47.

    Article  PubMed  Google Scholar 

  23. Slotkin T. Nicotine and the adolescent brain: insights from an animal model. Neurotoxicol Teratol. 2002;24:369–84.

    Article  PubMed  Google Scholar 

  24. Smith R. Animal models of periadolescent substance use. Neurotoxicol Teratol. 2003;25(3):291–301.

    Article  PubMed  Google Scholar 

  25. Yücel M, et al. White-matter abnormalities in adolescents with long-term inhalant and cannabis use: a diffusion magnetic resonance imaging study. J Psychiatry Neurosci: JPN. 2010;35(6):409–12.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Takagi M, et al. Corpus callosum size and shape alterations in adolescent inhalant users. Addict Biol. 2013;18(5):851–4.

    Google Scholar 

  27. Jacobsen L, et al. Preliminary evidence of hippocampal dysfunction in adolescent MDMA (“ecstasy”) users: possible relationship to neurotoxic effects. Psychopharmacology. 2004;173(3–4):383–90.

    Article  PubMed  Google Scholar 

  28. Bava S, et al. Altered white matter microstructure in adolescent substance users. Psychiatry Res. 2009;173(3):228–37.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schweinsburg A, et al. fMRI response to spatial working memory in adolescents with comorbid marijuana and alcohol use disorders. Drug Alcohol Depend. 2005;79(2):201–10.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jacobsen LK, et al. Impact of cannabis use on brain function in adolescents. Ann N Y Acad Sci. 2004;1021:384–90.

    Article  PubMed  Google Scholar 

  31. Becker B, et al. Altered parahippocampal functioning in cannabis users is related to the frequency of use. Psychopharmacology. 2010;209(4):361–74.

    Article  PubMed  Google Scholar 

  32. Venkatasubramanian G, et al. Corpus callosum abnormalities associated with greater externalizing behaviors in subjects at high risk for alcohol dependence. Psychiatry Res. 2007;156(3):209–15.

    Article  PubMed  Google Scholar 

  33. Schweinsburg A, et al. Neural correlates of verbal learning in adolescent alcohol and marijuana users. Addiction. 2011;106:564–73.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Schweinsburg A, et al. The influence of recency of use on fMRI response during spatial working memory in adolescent marijuana users. J Psychoactive Drugs. 2010;42(3):401–12.

    Article  PubMed Central  PubMed  Google Scholar 

  35. McQueeny T, et al. Altered white matter integrity in adolescent binge drinkers. Alcohol: Clin Exp Res. 2009;33(7):1278–85.

    Article  Google Scholar 

  36. De Bellis M, et al. Diffusion tensor measures of the corpus callosum in adolescents with adolescent onset alcohol use disorders. Alcohol: Clin Exp Res. 2008;32(3):395–404.

    Article  Google Scholar 

  37. De Bellis M, et al. Prefrontal cortex, thalamus, and cerebellar volumes in adolescents and young adults with adolescent-onset alcohol use disorders and comorbid mental disorders. Alcohol: Clin Exp Res. 2005;29(9):1590–600.

    Article  Google Scholar 

  38. Tapert S, et al. Blood oxygen level dependent response and spatial working memory in adolescents with alcohol use disorders. Alcohol: Clin Exp Res. 2004;28(10):1577–86.

    Article  Google Scholar 

  39. Tapert SF, et al. Neural response to alcohol stimuli in adolescents with alcohol use disorder. Arch Gen Psychiatry. 2003;60(7):727–35.

    Article  PubMed  Google Scholar 

  40. Caldwell LC, et al. Gender and adolescent alcohol use disorders on BOLD (blood oxygen level dependent) response to spatial working memory. Alcohol Alcohol. 2005;40(3):194–200.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Medina KL, et al. Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcohol: Clin Exp Res. 2008;32(3):386–94.

    Article  Google Scholar 

  42. Nagel B, et al. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry Res: Neuroimaging. 2005;139:181–90.

    Article  PubMed Central  PubMed  Google Scholar 

  43. De Bellis M, et al. Hippocampal volume in adolescent-onset alcohol use disorders. Am J Psychiatry. 2000;157:737–44.

    Article  PubMed  Google Scholar 

  44. Jacobus J, et al. White matter integrity in adolescents with histories of marijuana use and binge drinking. Neurotoxicol Teratol. 2009;31(6):349–55.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Tapert, SF, et al. Level of response to alcohol and brain response during visual working memory. J stud Alcohol. 2004;65(6):692–700.

    Article  Google Scholar 

  46. Walterfang M, et al. Corpus callosum size and shape in first-episode affective and schizophrenia-spectrum psychosis. Psychiatry Res. 2009;173(1):77–82.

    Google Scholar 

  47. Churchwell JC, Lopez-Larson M, Yurgelun-Todd DA. Altered frontal cortical volume and decision making in adolescent cannabis users. Front Psychol. 2010;1(225):1–8.

    Google Scholar 

  48. Medina KL, et al. Prefrontal cortex morphometry in abstinent adolescent marijuana users: subtle gender effects. Addict Biol. 2009;14(4):457–68.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Medina KL, Nagel BJ, Tapert SF. Abnormal cerebellar morphometry in abstinent adolescent marijuana users. Psychiatry Res. 2010;182(2):152–9.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Medina KL, et al. Depressive symptoms in adolescents: associations with white matter volume and marijuana use. J Child Psychol Psychiatry. 2007;48(6):592–600.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Cheetham A, et al. Orbitofrontal volumes in early adolescence predict initiation of cannabis use: a 4-year longitudinal and prospective study. Biol Psychiatry. 2012;71:684–92.

    Google Scholar 

  52. Medina KL, Nagel BJ, Tapert SF. Abnormal cerebellar morphometry in abstinent adolescent marijuana users. Psychiatry Res. 2010;182(2):152–9.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Verdejo-Garcia A, et al. The differential relationship between cocaine use and marijuana use on decision making performance over repeat testing with the Iowa Gambling Task. Drug Alcohol Depend. 2007;90(1):2–11.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Yücel M, et al. Understanding drug addiction: a neuropsychological perspective. Aust N Z J Psychiatry. 2007;41(12):957–68.

    Article  PubMed  Google Scholar 

  55. Schmithorst V, et al. Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum Brain Mapp. 2005;26(2):139–47.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Pierpaoli C, et al. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.

    Article  PubMed  Google Scholar 

  57. Arnone D, et al. Corpus callosum damage in heavy marijuana use: preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. NeuroImage. 2008;41(3):1067–74.

    Article  PubMed  Google Scholar 

  58. Yucel M, et al. White-matter abnormalities in adolescents with long-term inhalant and cannabis use: a diffusion magnetic resonance imaging study. J Psychiatry Neurosci: JPN. 2010;35(6):409–12.

    Article  PubMed Central  PubMed  Google Scholar 

  59. McQueeny T, et al. Altered white matter integrity in adolescent binge drinkers. Alcohol: Clin Exp Res. 2009;33(7):1278–85.

    Google Scholar 

  60. McQueeny T, et al. Gender effects on amygdala morphometry in adolescent marijuana users. Behav Brain Res. 2011;224(1):128–34.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Ashtari M, et al. Diffusion abnormalities in adolescents and young adults with a history of heavy cannabis use. J Psychiatr Res. 2009;43(3):189–204.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Yücel M, et al. Toluene misuse and long-term harms: a systematic review of the neuro psychological and neuroimaging literature. Neurosci Biobehav Rev. 2008;32:910–26.

    Google Scholar 

  63. Molina-Holgado E, et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phospatidylinositol-3 kinase/Akt signaling. J Neurosci. 2002; 22(22):9742–53.

    PubMed  Google Scholar 

  64. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    Article  PubMed  Google Scholar 

  65. Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nature Rev: Neurosci. 2002;3(2):142–51.

    Google Scholar 

  66. Fuchs RA, et al. Relapse to drug seeking following prolonged abstinence: the role of environmental stimuli. Drug Discov Today: Dis Models. 2008;5(4):251–58.

    Google Scholar 

  67. O’Brien CP, et al. Classical conditioning in drug-dependent humans. Ann N Y Acad Sci. 1992;654:400–15.

    Article  PubMed  Google Scholar 

  68. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2012;Epub ahead of print.

    Google Scholar 

  69. Sinha R, Li CS. Imaging stress- and cue-induced drug and alcohol craving: association association with relapse and clinical implications. Drug Alcohol Rev. 2007;26(1):25–31.

    Article  PubMed  Google Scholar 

  70. Baddeley A. Working memory: theoriestheories, models, and controversies. Ann Rev Psychol. 2012;63:1–29.

    Article  Google Scholar 

  71. Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cognit, Affect Behav Neurosci. 2003;3(4):255–74.

    Article  Google Scholar 

  72. Jacobsen L, et al. Preliminary evidence of hippocampal dysfunction in adolescent MDMA (“ecstasy”) users: possible relationship to neurotoxic effects. Psychopharmacology (Berl). 2004;173(3–4):383–90.

    Article  Google Scholar 

  73. Jeneson A, Squire LR. Working memory, long-term memory, and medial temporal lobe function. Learn Mem. 2012;19(1):15–25.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Schweinsburg A, Brown S, Tapert S. The influence of marijuana ise on neurocognitive functioning in adolescents. Curr Drug Abus Rev. 2008;1(1):99–111.

    Article  Google Scholar 

  75. Padula C, Schweinsburg A, Tapert S. Spatial working memory performance and fMRI activation interactions in abstinent adolescent marijuana users. Psychol Addict Behav. 2007;21(4):478–87.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Tapert S, et al. Functional MRI of inhibitory processing in abstinent adolescent marijuana users. Psychopharmacology. 2007;194:173–83.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Bates ME, et al. Short term neuropsychological recovery in substance use disordered clients. Alcohol: Clin Exp Res. 2005;29(3):367–77.

    Article  Google Scholar 

  78. Tapert S, et al. Substance use and withdrawal: neuropsychological neuropsychological functioning over 8 years in youth. J Int Neuropsychol Soc. 2002;8:873–83.

    PubMed  Google Scholar 

  79. Cousijn J, et al. Grey matter alterations associated with cannabis use: results results of a VBM study in heavy cannabis users and healthy controls. NeuroImage. 2012;59(4):3845–51.

    Google Scholar 

  80. Lorenzetti V, et al. Structural MRI findings in long-term cannabis users: what do we know? Subst Use Misuse. 2010;45(11):1787–808.

    Article  PubMed  Google Scholar 

  81. Jager G, et al. Effects of frequent cannabis use on hippocampal activity during an associative learning memory task. Eur Psychopharmacol. 2007;17:289–97.

    Google Scholar 

  82. Lopez-Larson MP, et al. Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behav Brain Res. 2011;220(1):164–72.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Pfefferbaum A, Adalsteinsson E, Sullivan E. Supratentorial profile of white matter microstructural integrity in recovering alcoholic men and women. Biol Psychiatry. 2006;59(4):364–72.

    Article  PubMed  Google Scholar 

  84. Pfefferbaum A, Sullivan E. Disruption of brain white matter microstructure by excessive intracellular and extracellular fluid in alcoholism: evidence from diffusion tensor imaging. Neuropsychopharmacology. 2005;30(2):423–32.

    Article  PubMed  Google Scholar 

  85. Lubman D, Yücel M, Hall W. Substances and the adolescent brain: a toxic combination? J Psychopharmacol. 2007.

    Google Scholar 

  86. Landfield PW, Caldwallader LB, Vinsant S. Quantitative changes in hippocampal structure following long-term exposure to Δ9-tetrahydrocannabinol: possible mediation by glucocorticoid systems. Brain Res. 1988;443(1–2):47–62.

    Article  PubMed  Google Scholar 

  87. Chan GCK, et al. Hippocampal neurotoxicity of ∆9-Tetrahydrocannabinol. J Neurosci. 1998;18(14):5322–32.

    PubMed  Google Scholar 

  88. Ashton JC, Darlington CL, Smith PF. Co-distribution of the cannabinoid CB1 receptor and the 5-HT transporter in the rat amygdale. Eur J pharmacol. 2006;537(1–3):70–1.

    Article  PubMed  Google Scholar 

  89. Sanchez C, et al. Delta-9 tetrahydrocanabinol induces apoptosis in C6 glioma cells. FEBS Lett. 1998;436:6–10.

    Article  PubMed  Google Scholar 

  90. Davis KL, et al. White matter changes in schizophrenia evidence for myelin-related dysfunction. Arch Gen Psychiatry. 2003;60(5):443–56.

    Article  PubMed  Google Scholar 

  91. Guerri C, Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol. 2010;44:15–26.

    Article  PubMed  Google Scholar 

  92. Hendrickson A, et al. Aberrant synaptic activation of N-methyl-D-aspartate receptors underlies ethanol withdrawal hyperexciteability. J Pharmacol Exp Ther. 2007;321(1):60–72.

    Article  Google Scholar 

  93. Crews F, et al. Neurogenesis in adolescent brain in potently inhibited by ethanol. Neuroscience. 2006;137:437–45.

    Article  PubMed  Google Scholar 

  94. Hansen HH, et al. Cannabinoids enhance susceptibility of immature brain to ethanol neurotoxicity. Ann Neurol. 2008;64(1):42–52.

    Article  PubMed  Google Scholar 

  95. Win-Shwe T, Fujimaki H. Neurotoxicity of toluene. Toxicol Lett. 2010;198:93–98.

    Article  PubMed  Google Scholar 

  96. Rosenberg N, et al. Neuropsychologic Impairment impairment and MRI abnormalities associated with chronic solvent abuse. Clin Toxicol. 2002;40(1):21–34.

    Article  Google Scholar 

  97. Reske M, Paulus M. The diagnostic and therapeutic potential of neuroimaging in addiction medecine. In: Adinoff B, Stein E, editors. Neuroimaging in addiction. Chichester: Wiley-Blackwell; 2011.

    Google Scholar 

  98. Hong L, et al. Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry. 2009;66(4):431–41.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takagi, M., Youssef, G., Lorenzetti, V. (2016). Neuroimaging of the Human Brain in Adolescent Substance Users. In: De Micheli, D., Andrade, A., da Silva, E., de Souza Formigoni, M. (eds) Drug Abuse in Adolescence. Springer, Cham. https://doi.org/10.1007/978-3-319-17795-3_6

Download citation

Publish with us

Policies and ethics