Skip to main content

Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared

  • Chapter
Book cover Membrane Potential Imaging in the Nervous System and Heart

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 859))

Abstract

Functional imaging microscopy based on voltage-sensitive dyes (VSDs) has proven effective for revealing spatio-temporal patterns of activity in vivo and in vitro. Microscopy based on two-photon excitation of fluorescent VSDs offers the possibility of recording sub-millisecond membrane potential changes on micron length scales in cells that lie upwards of one millimeter below the brain’s surface. Here we describe progress in monitoring membrane voltage using two-photon excitation (TPE) of VSD fluorescence, and detail an application of this emerging technology in which action potentials were recorded in single trials from individual mammalian nerve terminals in situ. Prospects for, and limitations of this method are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker CD, Yan P, Loew LM (2011) Single-voxel recording of voltage transients in dendritic spines. Biophys J 101:L11–L13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37:7352–7356

    Article  CAS  PubMed  Google Scholar 

  • Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bevilacqua F, Piguet D et al (1999) In vivo local determination of tissue optical properties: applications to human brain. Appl Opt 38:4939–4950

    Article  CAS  PubMed  Google Scholar 

  • Bewersdorf J, Pick R, Hell SW (1998) Multifocal multiphoton microscopy. Opt Lett 23:655–657

    Article  CAS  PubMed  Google Scholar 

  • Bullen A, Patel SS, Saggau P (1997) High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys J 73:477–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154(4):904–913

    Article  CAS  PubMed  Google Scholar 

  • Clarke RJ, Zouni A, Holzwarth JF (1995) Voltage sensitivity of the fluorescent probe RH421 in a model membrane system. Biophys J 68:1406–1415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88

    CAS  PubMed  Google Scholar 

  • Cohen LB, Salzberg BM et al (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol 19:1–36

    Article  CAS  PubMed  Google Scholar 

  • Collins JR (1925) Change in the infra-red absorption spectrum of water with temperature. Phys Rev 26:771–779

    Article  CAS  Google Scholar 

  • Contreras D, Llinás R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J Neurosci 21:9403–9413

    CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    Google Scholar 

  • Dombeck DA, Sacconi L, Blanchard-Desce M, Webb WW (2005) Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol 94:3628–3636

    Google Scholar 

  • Douglas WW (1963) A possible mechanism of neurosecretion release of vasopressin by depolarization and its dependence on calcium. Nature 197:81–82

    Article  CAS  Google Scholar 

  • Douglas WW, Poisner AM (1964) Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J Physiol 172:1–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dragsten PR, Webb WW (1978) Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540. Biochemistry 17:5228–5240

    Article  CAS  PubMed  Google Scholar 

  • Dunn AK, Wallace VP, Coleno M, Berns MW, Tromberg BJ (2000) Influence of optical properties on two-photon fluorescence imaging in turbid samples. Appl Opt 39:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Fisher JAN (2007) Linear and non-linear fluorescence imaging of neuronal activity (Ph.D.: 212). Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA

    Google Scholar 

  • Fisher JA, Civillico EF, Contreras D, Yodh AG (2004) In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes. Opt Lett 29:71–73

    Article  PubMed  Google Scholar 

  • Fisher JA, Salzberg BM, Yodh AG (2005) Near infrared two-photon excitation cross-sections of voltage-sensitive dyes. J Neurosci Meth 148:94–102

    Article  CAS  Google Scholar 

  • Fisher JA, Barchi JR, Welle CG, Kim GH, Kosterin P, Obaid AL, Yodh AG, Contreras D, Salzberg BM (2008) Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ. J Neurophysiol 99:1545–1553

    Article  PubMed  Google Scholar 

  • Fisher JAN, Susumu K, Therien MJ, Yodh AG (2009) One- and two-photon absorption of highly conjugated multiporphyrin systems in the two-photon Soret transition region. J Chem Phys 130:134506 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  • Foley J, Muschol M (2008) Action spectra of electrochromic voltage-sensitive dyes in an intact excitable tissue. J Biomed Opt 13:064015

    Article  PubMed  Google Scholar 

  • Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119

    Article  Google Scholar 

  • Fromherz P, Muller CO (1993) Voltage-sensitive fluorescence of amphiphilichemicyanine dyes in neuron membrane. Biochim Biophys Acta 1150:111–122

    Article  CAS  PubMed  Google Scholar 

  • Fromherz P, Hübener G, Kuhn B, Hinner MJ (2008) ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity. Eur Biophys J 37:509–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gainer H, Wolfe SA Jr, Obaid AL, Salzberg BM (1986) Action potentials and frequency-dependent secretion in the mouse neurohypophysis. Neuroendocrinology 43:557–563

    Article  CAS  PubMed  Google Scholar 

  • Goeppert-Mayer M (1931) Ueber Elementarakte mit zwei Quantenspruengen. Ann Phys (Paris) 273

    Google Scholar 

  • Grinvald A (1985) Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain. Annu Rev Neurosci 8:263–305

    Article  CAS  PubMed  Google Scholar 

  • Grinvald A, Fine A, Farber IC, Hildesheim R (1983) Fluorescence monitoring of electrical responses from small neurons and their processes. Biophys J 42:195–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568

    CAS  PubMed  Google Scholar 

  • Guerrero G, Isacoff EY (2001) Genetically encoded optical sensors of neuronal activity and cellular function. Curr Opin Neurobiol 11:601–607

    Article  CAS  PubMed  Google Scholar 

  • Guerrero G, Siegel MS, Roska B, Loots E, Isacoff EY (2002) Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophys J 83:3607–3618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hell SW, Booth M et al (1998) Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation. Opt Lett 23:1238–1240

    Article  CAS  PubMed  Google Scholar 

  • Iyer V, Losavio BE, Saggau P (2003) Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J Biomed Opt 8:460–471

    Article  PubMed  Google Scholar 

  • Iyer V, Hoogland TM, Saggau P (2006) Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J Neurophysiol 95:535–545

    Article  PubMed  Google Scholar 

  • Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim DH, Kim KH, Yazdanfar S, Peter TC (2005) Optical biopsy in high-speed handheld miniaturized multifocal microscopy. Proc SPIE 14:5700

    Google Scholar 

  • Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol 375:89–108

    Article  CAS  PubMed  Google Scholar 

  • Knöpfel T, Tomita K, Shimazaki R, Sakai R (2003) Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods 30:42–48

    Article  PubMed  Google Scholar 

  • Kosterin P, Kim GH, Muschol M, Obaid AL, Salzberg BM (2005) Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production. J Membr Biol 208:113–124

    Article  CAS  PubMed  Google Scholar 

  • Kuhn B, Fromherz P (2003) Anellatedhemicyanine dyes in a neuron membrane: molecular Stark effect and optical voltage recording. J Phys Chem B 107:7903–7913

    Article  CAS  Google Scholar 

  • Kuhn B, Fromherz P, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87:631–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhn B, Denk W, Bruno RM (2008) In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness.". Proc Natl Acad Sci U S A A105:7588–7593

    Article  Google Scholar 

  • Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M (2006) Application of multiline two-photon microscopy to functional in vivo imaging. J Neurosci Meth 151:276–286

    Article  Google Scholar 

  • Lillis KP, Eng A, White JA, Mertz J (2008) Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. J Neurosci Meth 172:178–184

    Article  Google Scholar 

  • Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  PubMed  Google Scholar 

  • Llinás R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353:1841–1849

    Article  PubMed Central  PubMed  Google Scholar 

  • Loew LM, Cohen LB, Salzberg BM, Obaid AL, Bezanilla F (1985) Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J 47:71–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matiukas A, Mitrea BG et al (2006) New near-infrared optical probes of cardiac electrical activity. Am J Physiol Heart Circ Physiol 290:H2633–H2643

    Article  CAS  PubMed  Google Scholar 

  • Matiukas A, Mitrea BG et al (2007) Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4:1441–1451

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreaux L, Pons T, Dambrin V, Blanchard-Desce M, Mertz J (2003) Electro-optic response of second-harmonic generation membrane potential sensors. Opt Lett 28:625–627

    Article  CAS  PubMed  Google Scholar 

  • Muschol M, Kosterin P, Ichikawa M, Salzberg BM (2003) Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of “stuttering conduction”. J Neurosci 23:11352–11362

    CAS  PubMed  Google Scholar 

  • Nielsen T, Fricke M, Hellweg D, Andresen P (2001) High efficiency beam splitter for multifocal multiphoton microscopy. J Microsc 201:368–376

    Article  CAS  PubMed  Google Scholar 

  • Nordmann JJ (1977) Ultrastructuralmorphometry of the rat neurohypophysis. J Anat 123:213–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nuriya M, Jiang J, Nemet B, Eisenthal KB, Yuste R (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103:786–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obaid AL, Salzberg BM (1996) Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretory terminal arborization: optical recording of action potential propagation using an ultrafast photodiode-MOSFET camera and a photodiode array. J Gen Physiol 107:353–368

    Article  CAS  PubMed  Google Scholar 

  • Obaid AL, Orkand RK, Gainer H, Salzberg BM (1985) Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis. J Gen Physiol 85:481–489

    Article  CAS  PubMed  Google Scholar 

  • Obaid AL, Flores R, Salzberg BM (1989) Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes. J Gen Physiol 93:715–729

    Article  CAS  PubMed  Google Scholar 

  • Obaid AL, Zou D-J, Rohr S, Salzberg BM (1992) Optical recording with single cell resolution from a simple mammalian nervous system: electrical activity in ganglia from the submucousplexus of the guinea-pig ileum. Biol Bull 183:344–346

    Google Scholar 

  • Obaid AL, Loew LM, Wuskell JP, Salzberg BM (2004) Novel naphthylstyryl-pyridinium potentiometric dyes offer advantages for neural network analysis. J Neurosci Meth 134:179–190

    Article  CAS  Google Scholar 

  • Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111:29–37

    Article  CAS  PubMed  Google Scholar 

  • Orbach HS, Cohen LB (1983) Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system. J Neurosci 3:2251–2262

    CAS  PubMed  Google Scholar 

  • Orbach HS, Cohen LB, Grinvald A (1985) Optical mapping of electrical activity in rat somatosensory and visual cortex. J Neurosci 5:1886–1895

    CAS  PubMed  Google Scholar 

  • Otsu Y, Bormuth V et al (2008) Optical monitoring of neuronal activity at high frame rate with a digital random-accessmultiphoton (RAMP) microscope. J Neurosci Methods 173:259–270

    Article  PubMed  Google Scholar 

  • Parsons TD, Kleinfeld D, Raccuia-Behling F, Salzberg BM (1989) Optical recording of the electrical activity of synaptically interacting aplysia neurons in culture using potentiometric probes. Biophys J 56:213–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parsons TD, Salzberg BM, Obaid AL, Raccuia-Behling F, Kleinfeld D (1991) Long-term optical recording of patterns of electrical activity in ensembles of cultured aplysia neurons. J Neurophysiol 66:316–333

    CAS  PubMed  Google Scholar 

  • Petersen CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309

    CAS  PubMed  Google Scholar 

  • Pons T, Moreaux L, Mongin O, Blanchard-Desce M, Mertz J (2003) Mechanisms of membrane potential sensing with second-harmonic generation microscopy. J Biomed Opt 8:428–431

    Article  CAS  PubMed  Google Scholar 

  • Richards B, Wolf E (1959) Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc Lond A 253:358–379

    Article  Google Scholar 

  • Rowan MJM, Tranquil E, Christie JM (2014) Distinct Kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 34:6611–6623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai R, Repunte-Canonigo V, Raj CD, Knöpfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  CAS  PubMed  Google Scholar 

  • Salama G, Choi BR et al (2005) Properties of new, long-wavelength, voltage-sensitive dyes in the heart. J Membr Biol 208:125–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salome R, Kremer Y et al (2006) Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J Neurosci Meth 154:161–174

    Article  CAS  Google Scholar 

  • Salzberg BM (1983) Optical recording of electrical activity in neurons using molecular probes. In: Barker J, McKelvy J (eds) Current methods in cellular neurobiology. Wiley, New York, NY

    Google Scholar 

  • Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509

    Article  CAS  PubMed  Google Scholar 

  • Salzberg BM, Grinvald A, Cohen LB, Davila HV, Ross WN (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40:1281–1291

    CAS  PubMed  Google Scholar 

  • Salzberg BM, Obaid AL, Senseman DM, Gainer H (1983) Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306:36–40

    Article  CAS  PubMed  Google Scholar 

  • Salzberg BM, Obaid AL, Gainer H (1985) Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis. J Gen Physiol 86:395–411

    Article  CAS  PubMed  Google Scholar 

  • Salzberg BM, Obaid AL, Bezanilla F (1993) Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon. Jpn J Physiol 43(Suppl 1):S37–S41

    PubMed  Google Scholar 

  • Sherrington C (1951) Man on his nature. Cambridge University Press, Cambridge

    Google Scholar 

  • Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13:3315–3330

    Article  CAS  PubMed  Google Scholar 

  • Svoboda DW (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    Article  PubMed  Google Scholar 

  • Teisseyre TZ, Millard AC et al (2007) Nonlinear optical potentiometric dyes optimized for imaging with 1064-nm light. J Biomed Opt 12:044001

    Article  PubMed  Google Scholar 

  • Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024

    Article  CAS  PubMed  Google Scholar 

  • Vucinic D, Sejnowski TJ (2007) A compact multiphoton 3D imaging system for recording fast neuronal activity. PLoS One 2:e699

    Article  PubMed Central  PubMed  Google Scholar 

  • Waggoner AS (1979) Dye indicators of membrane potential. Annu Rev Biophys Bioeng 8:47–68

    Article  CAS  PubMed  Google Scholar 

  • Xu C (2000) Two-photon cross-sections of indicators. In: Yuste R, Lanni F, Konnerth A (eds) Imaging neurons: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am 13:481–491

    Article  CAS  Google Scholar 

  • Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A 93:10763–10768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan P, Acker CD, Zhou WL, Lee P, Bollensdorff C, Negrean A, Lotti J, Sacconi L, Srdjan A, Kohl P, Mansvelder HD, Pavone FS, Loew LM (2012) Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci U S A 109:20443–20448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuste R, Tank DW, Kleinfeld D (1997) Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices. Cereb Cortex 7:546–558

    Article  CAS  PubMed  Google Scholar 

  • Zhou W-L, Yan P, Wuskell JP, Loew LM, Antic SD (2007) Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J Neurosci Meth 164:225–239

    Article  CAS  Google Scholar 

  • Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by USPHS grants NS40966 and NS16824 (B.M.S.) and by a Fellowship from Oak Ridge Institute for Science and Education (J.A.N.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Salzberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fisher, J.A.N., Salzberg, B.M. (2015). Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared. In: Canepari, M., Zecevic, D., Bernus, O. (eds) Membrane Potential Imaging in the Nervous System and Heart. Advances in Experimental Medicine and Biology, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-319-17641-3_17

Download citation

Publish with us

Policies and ethics