Skip to main content

Fast Segmentation of Sparse 3D Point Trajectories Using Group Theoretical Invariants

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Included in the following conference series:

Abstract

We present a novel approach for segmenting different motions from 3D trajectories. Our approach uses the theory of transformation groups to derive a set of invariants of 3D points located on the same rigid object. These invariants are inexpensive to calculate, involving primarily QR factorizations of small matrices. The invariants are easily converted into a set of robust motion affinities and with the use of a local sampling scheme and spectral clustering, they can be incorporated into a highly efficient motion segmentation algorithm. We have also captured a new multi-object 3D motion dataset, on which we have evaluated our approach, and compared against state-of-the-art competing methods from literature. Our results show that our approach outperforms all methods while being robust to perspective distortions and degenerate configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For ease of exposition, we will consider here that \(N\) = 4, but the following construct is similar for any \(N\) \(\ge \)2.

References

  1. Costeira, J.P., Kanade, T.: A multibody factorization method for independently moving objects. IJCV 29(3), 159–179 (1998)

    Article  Google Scholar 

  2. Vidal, R.: Subspace clustering. IEEE Sig. Process. Mag. 28(3), 52–68 (2011)

    Article  MathSciNet  Google Scholar 

  3. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)

    Google Scholar 

  4. Liu, G., Lin, Z., and Yu, Y.: Robust subspace segmentation by low-rank representation. In: ICML (2010)

    Google Scholar 

  5. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Lauer, F., Schnörr, C.: Spectral clustering of linear subspaces for motion segmentation. In: ICCV (2009)

    Google Scholar 

  7. Zografos, V., Ellis, L., Mester, R.: Discriminative subspace clustering. In: CVPR (2013)

    Google Scholar 

  8. Hadfield, S., Bowden, R.: Kinecting the dots: Particle based scene flow from depth sensors. In: ICCV, pp. 2290–2295 (2011)

    Google Scholar 

  9. Quiroga, J., Devernay, F., Crowley, J.: Scene flow by tracking in intensity and depth data. In: CVPR Workshops (2012)

    Google Scholar 

  10. Mateus, D., Horaud, R.: Spectral methods for 3-D motion segmentation of sparse scene-flow. In: WMVC (2007)

    Google Scholar 

  11. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS, pp. 849–856 (2001)

    Google Scholar 

  12. Perera, S., Barnes, N.: Maximal cliques based rigid body motion segmentation with a RGB-D camera. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 120–133. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Lenz, P., Ziegler, J., Geiger, A., Roser, M.: Sparse scene flow segmentation for moving object detection in urban environments. In: Intelligent Vehicles Symposium, pp. 926–932 (2011)

    Google Scholar 

  14. Klappstein, J., Vaudrey, T., Rabe, C., Wedel, A., Klette, R.: Moving object segmentation using optical flow and depth information. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 611–623. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Ghuffar, S., Brosch, N., Pfeifer, N., Gelautz, M.: Motion segmentation in videos from time of flight cameras. In: IWSSIP (2012)

    Google Scholar 

  16. Wang, Y., Huang, S.: An effient motion segmentation algorithm for multibody RGB-D SLAM. In: Proceedings of Australasian Conference on Robotics and Automation (2013)

    Google Scholar 

  17. Stuckler, J., Behnke, S.: Efficient dense 3D rigid-body motion segmentation in RGB-D video. In: BMVC (2013)

    Google Scholar 

  18. Teichman, A., Lussier, J., Thrun, S.: Learning to segment and track in RGBD. IEEE Trans. Autom. Sci. Eng. 10(4), 841–852 (2013)

    Article  Google Scholar 

  19. Herbst, E., Ren, X., Fox, D.: Object segmentation from motion with dense feature matching. In: Workshop on Semantic Perception, Mapping and Exploration (ICRA) (2012)

    Google Scholar 

  20. Weiss, I.: Geometric invariants and object recognition. Inter 10(3), 201–231 (1993)

    Google Scholar 

  21. Gool, L.V., Moons, T., Pauwels, E., Oosterlinck, A.: Vision and Lie’s approach to invariance. Image Vis. Comput. 13(4), 259–277 (1995)

    Article  Google Scholar 

  22. Schulz-Mirbach, H.: Anwendung von Invarianzprinzipien zur Merkmalgewinnung in der Mustererkennung, ser. Fortschritt-Berichte VDI : Reihe 10, Informatik, Kommunikation; Nr. 372. VDI-Verl. Dusseldorf (1995) iSBN 3-18-337210-X

    Google Scholar 

  23. Schulz-Mirbach, H.: Invariant features for gray scale images. In: DAGM (1995)

    Google Scholar 

  24. Govindu, V.M.: A tensor decomposition for geometric grouping and segmentation. In: CVPR, vol. 1, pp. 1150–1157 (2005)

    Google Scholar 

  25. Chen, G., Lerman, G.: Spectral curvature clustering (SCC). IJCV 81(3), 317–330 (2009)

    Article  Google Scholar 

  26. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IROS (2012)

    Google Scholar 

  27. Spinello, L., Arras, K.O.: People detection in RGB-D data. In: IROS (2011)

    Google Scholar 

  28. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV (2007)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Vinnova through a grant for the project iQmatic, by SSF through a grant for the project VPS, by VR through a grant for the project ETT, and through the Strategic Areas for ICT research CADICS and ELLIIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Zografos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zografos, V., Lenz, R., Ringaby, E., Felsberg, M., Nordberg, K. (2015). Fast Segmentation of Sparse 3D Point Trajectories Using Group Theoretical Invariants. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics