Skip to main content

A Flexible and Compact Hardware Architecture for the SIMON Block Cipher

  • Conference paper
  • First Online:
Lightweight Cryptography for Security and Privacy (LightSec 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8898))

Abstract

SIMON is a recent, light-weight block cipher developed by NSA. Previous work on SIMON shows that it is a very promising alternative of AES for resource-constrained platforms. While SIMON offers a range of block sizes and key lengths, a straightforward implementation would select fixed values in order to achieve a compact design. In contrast, we propose a flexible hardware architecture on FPGAs that still preserves the compactness of SIMON. The proposed implementation can execute all configurations of SIMON, and thus provides a versatile architecture that enables adaptive security using a variable key-size. Moreover, it also reduces the inefficiency of encrypting slightly longer messages by supporting a variable block-size. The implementation results show that the proposed architecture occupies 90 and 32 slices on Spartan-3 and Spartan-6 FPGAs, respectively. To our best knowledge, these area results are smaller than other block ciphers of similar security level. Furthermore, we also quantify the cost of flexibility and show the trade-off between the security level, throughput and area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: Break area records of block ciphers on FPGAs. IEEE Embed. Syst. Lett. 6(2), 37–40 (2014)

    Article  Google Scholar 

  2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers (2013)

    Google Scholar 

  3. Chaves, R.: Compact CLEFIA implementation on FPGAs. In: Athanas, P., Pnevmatikatos, D., Sklavos, N. (eds.) Embedded Systems Design with FPGAs, pp. 225–243. Springer, New York (2013). http://dx.doi.org/10.1007/978-1-4614-1362-2_10

  4. Chu, J., Benaissa, M.: Low area memory-free FPGA implementation of the AES algorithm. In: 2012 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 623–626, August 2012

    Google Scholar 

  5. Cook, D.L.: Elastic block ciphers. Ph.D. thesis, Columbia University (2006)

    Google Scholar 

  6. DARPA: SHIELD: supply chain hardware integrity for electronics defense proposers day, February 2014

    Google Scholar 

  7. DARPA: Tiny, cheap, foolproof: Seeking new component to counter counterfeit electronics, February 2014. http://www.darpa.mil/NewsEvents/Releases/2014/02/24.aspx

  8. FIPS PUB 197: AES: Advanced encryption standard. Federal Information Processing Standards Publication (2001)

    Google Scholar 

  9. Guneysu, T., Kasper, T., Novotny, M., Paar, C., Rupp, A.: Cryptanalysis with COPACOBANA. IEEE Trans. Comput. 57(11), 1498–1513 (2008)

    Article  MathSciNet  Google Scholar 

  10. ISO/IEC 29192–2:2012: Information technology - security techniques - lightweight cryptography - part 2: Block ciphers (2012)

    Google Scholar 

  11. Kaps, J.-P.: Chai-Tea, Cryptographic Hardware Implementations of xTEA. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 363–375. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension in embedded system design. In: Proceedings of the 41st Annual Design Automation Conference, DAC 2004, pp. 753–760. ACM, New York (2004). http://doi.acm.org/10.1145/996566.996771, moderator-Ravi, Srivaths

  13. Li, H.: Efficient and flexible architecture for AES. IEE Proc. Circuits, Devices Syst. 153(6), 533–538 (2006)

    Article  Google Scholar 

  14. Mace, F., Standaert, F.X., Quisquater, J.J.: FPGA implementation(s) of a scalable encryption algorithm. IEEE Trans. Very Large Scale Integration (VLSI) Systems 16(2), 212–216 (2008)

    Article  Google Scholar 

  15. McLoone, M., McCanny, J.: Generic architecture and semiconductor intellectual property cores for advanced encryption standard cryptography. IEE Proc. Comput. Digital Tech. 150(4), 239–244 (2003)

    Article  Google Scholar 

  16. NIST: Cryptographic Module Validation Program Management Manual, May 2014. http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPMM.pdf

  17. Portilla, J., Otero, A., de la Torre, E., Riesgo, T., Stecklina, O., Peter, S., Langendrfer, P.: Adaptable security in wireless sensor networks by using reconfigurable ECC hardware coprocessors. In: IJDSN 2010 (2010). http://dblp.uni-trier.de/db/journals/ijdsn/ijdsn2010.html#PortillaOTRSPL10

  18. Schaumont, P., Aysu, A.: Three design dimensions of secure embedded systems. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 1–20. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-41224-0_1

    Chapter  Google Scholar 

  19. Sharma, K., Ghose, M.: Cross layer security framework for wireless sensor networks. Int. J. Secur. Appl. 5(1), 35–52 (2011)

    Google Scholar 

  20. Standaert, F.X., Piret, G., Rouvroy, G., Quisquater, J.J.: FPGA implementations of the ICEBERG block cipher. In: International Conference on Information Technology: Coding and Computing, ITCC 2005, vol. 1, pp. 556–561 (2005)

    Google Scholar 

  21. Wang, Y., Attebury, G., Ramamurthy, B.: A survey of security issues in wireless sensor networks. IEEE Commun. Surv. Tutorials 8(2), 2–23 (2006)

    Article  Google Scholar 

  22. Yalla, P., Kaps, J.: Lightweight cryptography for FPGAs. In: International Conference on Reconfigurable Computing and FPGAs, ReConFig 2009, pp. 225–230 (2009)

    Google Scholar 

  23. Younis, M., Krajewski, N., Farrag, O.: Adaptive security provision for increased energy efficiency in wireless sensor networks. In: IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 999–1005, October 2009

    Google Scholar 

Download references

Acknowledgments

This project was supported in part by the National Science Foundation grant no 1115839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ege Gulcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gulcan, E., Aysu, A., Schaumont, P. (2015). A Flexible and Compact Hardware Architecture for the SIMON Block Cipher. In: Eisenbarth, T., Öztürk, E. (eds) Lightweight Cryptography for Security and Privacy. LightSec 2014. Lecture Notes in Computer Science(), vol 8898. Springer, Cham. https://doi.org/10.1007/978-3-319-16363-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16363-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16362-8

  • Online ISBN: 978-3-319-16363-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics