Skip to main content

Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship Perspective

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

Abstract

This article reviews the present state of Quantitative Structure-Property Relationships (QSPR) in glass design and gives an outlook into future developments. First an overview is given of the statistical methodology, with particular emphasis to the integration of QSPR with molecular dynamics simulations to derive informative structural descriptors. Then, the potentiality of this approach as a tool for interpretative and predictive purposes is highlighted by a number of recent inspiring applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Eugen, Glasses as engineering materials: a review. Mater. Des. 32, 1717–1732 (2011)

    Article  Google Scholar 

  2. I. Izquierdo-Barba, A.J. Salinas, M. Vallet-Regi, M bioactive glasses: from macro to nano. Int. J. Appl. Glass Sci. 4, 149–161 (2013)

    Article  Google Scholar 

  3. J. Hum, A.R. Boccaccini, Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J. Mater. Sci. Mater. M. 23, 2317–2333 (2012)

    Article  Google Scholar 

  4. G.N. Greaves, S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys. 56, 1–166 (2007)

    Article  Google Scholar 

  5. SciGlass 6.5 Database and Information System, 2005. http://www.sciglass.info/

  6. International Glass Database System Interglad Ver. 7. http://www.newglass.jp/interglad_n/gaiyo/info_e.html

  7. A.I. Priven, O.V. Mazurin, Glass property databases: their history, present state, and prospects for further development. Glass: the challange for the 21st century. Adv. Mat. Res. 39–40, 147–152 (2008)

    Google Scholar 

  8. A.I. Priven, General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature. Glass Technol. 45, 244–254 (2004)

    Google Scholar 

  9. A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates, and silica based glasses. J. Phys. Chem. B 110, 11780–11795 (2006)

    Article  Google Scholar 

  10. A. Tilocca, N. de Leeuw, A.N. Cormack, Shell-model molecular dynamics calculations of modified silicate glasses. Phys. Rev. B 73, 104209–104223 (2006)

    Article  Google Scholar 

  11. A. Pedone, M. Corno, B. Civalleri, G. Malavasi, M.C. Menziani, U. Segre, P. Ugliengo, An ab initio parameterized interatomic force field for hydroxyapatite. J. Mat. Chem. 17, 2061–2068 (2007)

    Article  Google Scholar 

  12. A. Pedone, G. Malavasi, M.C. Menziani, U. Segre, F. Musso, M. Corno, B. Civalleri, P. Ugliengo, FFSiOH: a new force field for silica polymorphs and their hydroxylated surfaces based on periodic B3LYP calculations. Chem. Mater. 20, 2522–2531 (2008)

    Article  Google Scholar 

  13. A. Tilocca, Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J. Chem. Phys. 129, 084504 (2008)

    Article  Google Scholar 

  14. M. Salanne, B. Rotenberg, S. Jahn, R. Vuilleumier, C. Simon, P.A. Madden, Including many-body effects in models for ionic liquids. Theor. Chem. Acc. 131, 1143–1149 (2012)

    Article  Google Scholar 

  15. A. Pedone, Properties calculations of silica-based glasses by atomistic simulations techniques: a review. J. Phys. Chem. C 113, 20773–20784 (2009)

    Article  Google Scholar 

  16. M.E. Eberhart, D.P. Clougherty, Looking for design in material design. Nat. Mater. 3, 659–861 (2004)

    Article  Google Scholar 

  17. K. Wu, B. Natarajan, L. Morkowchuk, M. Krein, C.M. Breneman, From drug discovery QSAR to predictive materials QSPR: the evolution of descriptors, methods, and models. pp. 385–410. in Informatics dor materials science and engineering, ed. by K. Rajan (Elsevier, Amsterdam, 2013)

    Google Scholar 

  18. A.R. Katritzky, U. Maran, V.S. Lobanov, M. Karelson, Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. J. Chem. Inf. Comput. Sci. 40, 1–18 (2000)

    Article  Google Scholar 

  19. W.M. Berhanu, G.G. Pillai, A.A. Oliferenko, A.R. Katritzky, Quantitative structure-activity/property relationships: the ubiquitous links between cause and effect. Chem. Plus Chem. 77, 507–517 (2012)

    Google Scholar 

  20. A.R. Katritzky, M. Kuanar, S. Slavov, C.D. Hall, M. Karelson, I. Kahn, D.A. Dobchev, Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem. Rev. 110, 5714–5789 (2010)

    Article  Google Scholar 

  21. T. Le, V.C. Epa, F.R. Burden, D.A. Winkler, Quantitative structure-property relationship modeling of diverse materials properties. Chem. Rev. 112, 2889–2919 (2012)

    Article  Google Scholar 

  22. M. Karelson, V.S. Lobanov, A.R. Katritzky, Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 96, 1027–1043 (1996)

    Article  Google Scholar 

  23. G.S. Henderson, The structure of silicate melts: a glass perspective. Can. Mineral. 43, 1921–1958 (2005)

    Article  Google Scholar 

  24. G. Mountjoy, B.M. Al-Hasni, C. Storey, Structural organisation in oxide glasses from molecular dynamics modeling. J. Non-Cryst. Solids 357, 2522–2529 (2011)

    Article  Google Scholar 

  25. G. Malavasi, A. Pedone, M.C. Menziani, Towards a quantitative rationalization of multicomponent glass properties by means of molecular dynamics simulations. Mol. Simul. 32, 1045–1055 (2006)

    Article  Google Scholar 

  26. L. Adkins, A.N. Cormack, Large-scale simulations of sodium silicate glasses. J. Non-Cryst. Solids 357, 2538–2541 (2011)

    Article  Google Scholar 

  27. G. Malavasi, M.C. Menziani, A. Pedone, U. Segre, Void size distribution in MD-modelled silica glass structures. J. Non-Cryst. Solids 352, 285–296 (2006)

    Article  Google Scholar 

  28. P.X. Liu, W. Long, Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci. 10, 1978–1998 (2009)

    Article  Google Scholar 

  29. K. Baumann, Cross-validation as the objective function for variable-selection techniques. TrAC Trends Anal. Chem. 22, 395–406 (2003)

    Article  Google Scholar 

  30. S. Inabaw, S. Fujino, Empirical equation for calculating the density of oxide glasses. J. Am. Ceram. Soc. 93, 217–220 (2010)

    Article  Google Scholar 

  31. M.B. Volf, Mathematical Approach to Glass; Glass Science and Technology, vol. 9. (Elsevier, Prague, 1988)

    Google Scholar 

  32. I. Priven, O.V. Mazurin, Comparison of methods used for the calculation of density refractive index and thermal expansion of oxide glasses. Glass Technol. 44, 156–166 (2003)

    Google Scholar 

  33. L. Linati, G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, P. Mustarelli, U. Segre, Qualitative and quantitative structure-property relationships (QSPR) analysis of multicomponent potential bioglasses. J. Phys. Chem. B 109, 4989–4998 (2005)

    Article  Google Scholar 

  34. G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, A. Pedone, U. Segre, Density of multicomponent silica-based potential bioglasses: quantitative structure-property relationships (QSPR) analysis. J. Eur. Ceram. Soc. 27, 499–504 (2007)

    Article  Google Scholar 

  35. A.I. Priven, Evaluation of the fraction of fourfold-coordinated boron in oxide glasses from their composition. Glass Phys. Chem. 26, 441–454 (2000)

    Article  Google Scholar 

  36. L.I. Demkina, Investigation of the dependence of glass properties on their composition. Izd. Chimia 23, 123–127 (1976)

    Google Scholar 

  37. G. Lusvardi, G. Malavasi, F. Tarsitano, L. Menabue, M.C. Menziani, A. Pedone, Quantitative structure-properties relationships of potentially bioactive fluoro phospho-silicate glasses. J. Phys. Chem. B 113, 10331–10338 (2009)

    Article  Google Scholar 

  38. G. Lusvardi, G. Malavasi, M. Contrada, L. Menabue, M.C. Menziani, A. Pedone, U. Segre, Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 112, 12730–12739 (2008)

    Article  Google Scholar 

  39. L.L. Hench, Bioactive materials: the potential for tissue generation. Biomaterials 19, 1419–1423 (1998)

    Article  Google Scholar 

  40. J.E. Shelby, Introduction to Glass Science and Technology (RCS Paperbacks, Cambridge, 1997)

    Google Scholar 

  41. G. Engelhardt, D. Michel, High-Resolution Solids State NMR of Silicate and Zeolites (Wiley, Chichester, 1987)

    Google Scholar 

  42. G.N. Greaves, S. Sen, Inorganic glasses, glass-forming liquids and amorphising solids. Adv. Phys. 56, 1–166 (2007)

    Article  Google Scholar 

  43. K. Christie, A. Pedone, M.C. Menziani, A. Tilocca, Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J. Phys. Chem. B 115, 2038–2045 (2011)

    Article  Google Scholar 

  44. A. Pedone, T. Charpentier, M.C. Menziani, The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy. J. Mater. Chem. 22, 12599–12608 (2012)

    Article  Google Scholar 

  45. J.A. Kerr, CRC Handbook of Chemistry and Physics 1999–2000: A Ready-Reference Book of Chemical and Physical Data, 81st edn. ed. by D.R. Lide (CRC Press, Boca Raton, 2000)

    Google Scholar 

  46. L. Wondraczek1, J.C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, T. Rouxel, Towards ultrastrong glasses. Adv. Mat. 23, 4578–4586 (2011)

    Google Scholar 

  47. L.L. Hench, D.E. Day, W. Höland, V.M. Rheinberger, Glass and medicine. Int. J. Appl. Glass Sci. 1, 104–117 (2010)

    Article  Google Scholar 

  48. T. Kokubo, An introduction to Bioceramics. In Advanced Series in Ceramics, vol. 1. ed. by L.L. Hench, J. Wilson (World Scientific Publishing Co., Singapore, 1993)

    Google Scholar 

  49. M. Brink, T. Turunen, R.P. Happonen, A. Yli-Urpo, Compositional dependence of bioactivity of glasses in the system Na\(_{2}\)O-K\(_{2}\)O-MgO-CaO-B\(_{2}\)O\(_{3}\)-P\(_{2}\)O\(_{5}\)-SiO\(_{2}\). J. Biomed. Mater. Res. 37, 114–121 (1997)

    Article  Google Scholar 

  50. G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, Synthesis, characterization and molecular dynamics simulation of Na\(_{2}\)O-CaO-SiO\(_{2}\)-ZnO glasses. J. Phys. Chem. B 106, 9753–9760 (2002)

    Article  Google Scholar 

  51. G. Lusvardi, G. Malavasi, A. Pedone, L. Menabue, M.C. Menziani, V. Aina, A. Perardi, C. Morterra, F. Boccafoschi, S. Gatti, M. Bosetti, M.F. Cannas, Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 22, 505–526 (2008)

    Article  Google Scholar 

  52. G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, A combined experimental-computational strategy for the design, synthesis and characterization of bioactive zinc-silicate glasses. Key Eng. Mater. 377, 211–224 (2008)

    Article  Google Scholar 

  53. G. Lusvardi, D. Zaffe, L. Menabue, C. Bertoli, G. Malavasi, U. Consolo, In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomater. 5, 419–428 (2009)

    Article  Google Scholar 

  54. J.K. Christie, A. Tilocca, Molecular dynamics simulations and structural descriptors of radioisotope glass vectors for in situ radiotherapy. J. Phys. Chem. B 116, 12614–12620 (2012)

    Article  Google Scholar 

  55. A. Tilocca, A.N. Cormack, N.H. de Leeuw, The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19, 95–103 (2007)

    Google Scholar 

  56. A. Pedone, G. Malavasi, A.N. Cormack, U. Segre, M.C. Menziani, Insight into elastic properties of binary alkali-silicate glasses; prediction and interpretation through atomistic simulation techniques. Chem. Mater. 19, 3144–3154 (2007)

    Article  Google Scholar 

  57. A. Pedone, G. Malavasi, A.N. Cormack, U. Segre, M.C. Menziani, Elastic and dynamical properties of silicate glasses from computer simulations techniques. Theor. Chem. Acc. 120, 557–564 (2008)

    Article  Google Scholar 

  58. G. Hauret, Y. Vaills, T. Parot-Rajaona, F. Gervais, D. Mas, Y. Luspin, Dynamic behaviour of (1-x) SiO2-0.5xM2O glasses (M = Na, Li) investigated by infrared and Brillouin spectroscopies. J. Non-Cryst. Solids 191, 85–93 (1995)

    Article  Google Scholar 

  59. M. Eden, NMR studies of oxide-based glasses. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 108, 177–221 (2012)

    Article  Google Scholar 

  60. J.V. Hanna, M.E. Smith, Recent technique developments and applications of solid state NMR in characterising inorganic materials. Solid State NMR 38, 1–18 (2010)

    Article  Google Scholar 

  61. G. Engelhardt, D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, New York, 1988)

    Google Scholar 

  62. J.A. Tossell, P. Lazzeretti, Ab initio calculations of oxygen nuclear-quadrupole coupling constants and oxygen and silicon NMR shielding constants in molecules containing Si-O bonds. Chem. Phys. 112, 205–212 (1987)

    Article  Google Scholar 

  63. J.A. Tossell, Calculation of NMR shieldings and other properties for 3 and 5 coordinate Si, 3 coordinate-O and some siloxane and boroxol ring compounds. J. Non-Cryst. Solids 120, 13–19 (1990)

    Article  Google Scholar 

  64. X. Xue, M. Kanzaki, An ab initio calculation of \(^{17}\)O and \(^{29}\)Si NMR parameters for SiO\(_{2}\) polymorphs. Solid State Nucl. Magn. Reson. 16, 245–259 (2000)

    Article  Google Scholar 

  65. T. Clark, P.J. Grandinetti, P. Florian, J.F. Stebbins, An \(^{17}\)O NMR investigation of crystalline sodium metasilicate: implications for the determination of local structure in alkali silicates. J. Phys. Chem. 105, 12257–12265 (2001)

    Article  Google Scholar 

  66. H. Maekawa, P. Florian, D. Massiot, H. Kiyono, M. Nakaruma, Effect of alkali metal oxide on \(^{17}\)O NMR parameters and Si-O-Si angles of alkali metal disilicate glasses. J. Phys. Chem. 100, 5525–5532 (1996)

    Article  Google Scholar 

  67. J.A. Tossell, Quantum mechanical calculation of \(^{23}\)Na NMR shieldings in silicates and aluminosilicates. Phys. Chem. Miner. 27, 70–80 (1999)

    Article  Google Scholar 

  68. A. Pedone, M. Biczysko, V. Barone, Environmental effects in computational spectroscopy. Chem. Phys. Chem. 11, 1812–1832 (2010)

    Google Scholar 

  69. A. Pedone, M. Pavone, M.C. Menziani, V. Barone, Accurate first-principle prediction of \(^{29}\)Si and \(^{17}\)O NMR parameters in SiO\(_{2}\) polymorphs: the cases of zeolites sigma-2 and ferrierite. J. Chem. Theory Comput. 4, 2130–2140 (2008)

    Article  Google Scholar 

  70. J. Casanovas, F. Illas, G. Pacchioni, Ab initio calculations of \(^{29}\)Si solid state NMR chemical shifts of silcane and silanol groups in silica. Chem. Phys. Lett. 326, 523–529 (2000)

    Article  Google Scholar 

  71. L. Linati, G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, P. Mustarelli, A. Pedone, U. Segre, Medium range order in phospho-silicate bioactive glasses: insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations. J. Non-Cryst. Solids 354, 84–89 (2008)

    Article  Google Scholar 

  72. J.A. Tossell, J. Horbach, O triclusters revisited: classical MD and quantum cluster results for glasses of composition (Al\(_{2}\)O\(_{3})\)2(SiO\(_{2})\). J. Phys. Chem. B 109, 1794–1797 (2005)

    Article  Google Scholar 

  73. L. Olivier, X. Yuan, A.N. Cormack, C. Jäger, Combined \(^{29}\)Si double quantum NMR and MD simulation studies of network connectivities of binary Na\(_{2}\)OSiO\(_{2}\) glasses: new prospects and problems. J. Non-Cryst. Solids 293–295, 53–66 (2001)

    Article  Google Scholar 

  74. C. Leonelli, G. Lusvardi, M. Montorsi, M.C. Menziani, L. Menabue, P. Mustarelli, L. Linati, Influence of small additions of Al\(_{2}\)O\(_{3}\) on the properties of the Na\(_{2}\)O3SiO\(_{2}\) glass. J. Phys. Chem. B 105, 919–927 (2001)

    Article  Google Scholar 

  75. B. Park, H. Li, L.R. Corrales, Molecular dynamics simulation of La\(_{2}\)O\(_{3}\)-Na\(_{2}\)O-SiO\(_{2}\) glasses. II. The clustering of La\(^{3+}\) cations. J. Non-Cryst. Solids 297, 220–238 (2002)

    Article  Google Scholar 

  76. L. Barbieri, V. Cannillo, C. Leonelli, M. Montorsi, C. Siligardi, P. Mustarelli, Characterisation of CaO-ZrO\(_{2}\)-SiO\(_{2}\) glasses by MAS-NMR and molecular dynamics. Phys. Chem. Glass. B 45, 138–140 (2004)

    Google Scholar 

  77. E. Kashchieva, B. Shivachev, Y. Dimitriev, Molecular dynamics studies of vitreous boron oxide. J. Non-Cryst. Solids 351, 1158–1161 (2005)

    Google Scholar 

  78. J. Machacek, O. Gedeon, M. Liska, Group connectivity in binary silicate glasses. J. Non-Cryst. Solids 352, 2173–2179 (2006)

    Article  Google Scholar 

  79. G. Mountjoy, B.M. Al-Hasni, C. Storey, Structural organisation in oxide glasses from molecular dynamics modeling. J. Non-Cryst. Solids 357, 2522–2529 (2011)

    Article  Google Scholar 

  80. A. Jaworski, B. Stevensson, B. Pahari, K. Okhotnikov, M. Eden, Local structures and Al/Si ordering in lanthanum aluminosilicate glasses explored by advanced \(^{27}\)Al NMR experiments and molecular dynamics simulations. Phys. Chem. Chem. Phys. 14, 15866–15878 (2012)

    Article  Google Scholar 

  81. H. Inoue, A. Masuno, T. Watanabe, Modeling of the structure of sodium borosilicate glasses using pair potentials. J. Phys. Chem. B 116, 12325–12331 (2012)

    Article  Google Scholar 

  82. U. Voigt, H. Lammert, H. Eckert, A. Heuer, Cation clustering in lithium silicate glasses: quantitative description by solid-state NMR and molecular dynamics simulations. Phys. Rev. B 72, 64207 (2005)

    Article  Google Scholar 

  83. C.J. Pickard, F. Mauri, All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001)

    Article  Google Scholar 

  84. T. Charpentier, P. Kroll, F. Mauri, First-principles nuclear magnetic resonance structural analysis of vitreous silica. J. Phys. Chem. C 113, 7917–7929 (2009)

    Article  Google Scholar 

  85. A. Pedone, T. Charpentier, M.C. Menziani, Multinuclear NMR of CaSiO\(_{3}\) glass: simulation from first-principles. Phys. Chem. Chem. Phys. 12, 6054–6066 (2010)

    Article  Google Scholar 

  86. T. Charpentier, The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl. Magn. Reson. 40, 1–20 (2011)

    Article  Google Scholar 

  87. F. Angeli, O. Villain, S. Schuller, S. Ispas, T. Charpentier, Insight into sodium silicate glass structural organization by multinuclear NMR combined with first-principles calculations. Geochim. Cosmochim. Acta 75, 2553–2469 (2011)

    Google Scholar 

  88. A. Soleilhavoup, J.-M. Delaye, F. Angeli, D. Caurant, T. Charpentier, Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses. Magn. Res. Chem. 48, S159–S170 (2010)

    Article  Google Scholar 

  89. T. Charpentier, M.C. Menziani, A. Pedone, Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. RSC Adv. 3, 10550–10578 (2013)

    Article  Google Scholar 

  90. S. Ispas, T. Charpentier, F. Mauri, D.R. Neuville, Structural properties of lithium and sodium tetrasilicate glasses: molecular dynamics simulations versus NMR experimental and first-principles data. Solid State Sci. 12, 183–192 (2010)

    Article  Google Scholar 

  91. T. Charpentier, S. Ispas, M. Profeta, F. Mauri, C.J. Pickard, First-principles calculation of \(^{17}\)O, \(^{29}\)Si, and \(^{23}\)Na NMR spectra of sodium silicate crystals. J. Phys. Chem. B 108, 4147–4161 (2004)

    Article  Google Scholar 

  92. A. Pedone, E. Gambuzzi, M.C. Menziani, Unambiguous description of the oxygen environment in multicomponent aluminosilicate glasses from \(^{17}\)O solid state NMR computational spectroscopy. J. Phys. Chem. C 115, 14599–14609 (2012)

    Article  Google Scholar 

  93. A. Pedone, E. Gambuzzi, G. Malavasi, M.C. Menziani, First-principles simulations of the \(^{27}\)Al and \(^{17}\)O solid state NMR spectra of a calcium alumino-silicate glass. Theor. Chem. Acc. 131, 1147–1157 (2012)

    Article  Google Scholar 

  94. E. Gambuzzi, A. Pedone, M.C. Menziani, F. Angeli, D. Caurant, T. Charpentier, Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations. Geochim. Cosmochim. Acta 125, 170–185 (2014)

    Article  Google Scholar 

  95. A. Pedone, T. Charpentier, G. Malavasi, M.C. Menziani, New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010)

    Article  Google Scholar 

  96. F. Angeli, J.M. Delaye, T. Charpentier, J.C. Petit, D. Ghaleb, P. Faucon, Investigation of Al-O-Si bond angle in glass by \(^{27}\)Al 3Q-MAS NMR and molecular dynamics. Chem. Phys. Lett. 320, 681–687 (2000)

    Article  Google Scholar 

  97. E. Lippmaa, A. Samoson, M. Magi, High-resolution \(^{27}\)Al NMR of aluminosilicates. J. Am. Chem. Soc. 108, 1730–1735 (1986)

    Article  Google Scholar 

  98. F. Mauri, A. Pasquarello, B.G. Pfrommer, Y.G. Yoon, S.G. Louie, Si-O-Si bond-angle distribution in vitreous silica from first-principles \(^{29}\)Si NMR analysis. Phys. Rev. B 62, R4786–R4789 (2000)

    Article  Google Scholar 

  99. P. Florian, F. Fayon, D. Massiot, 2J Si-O-Si scalar spin-spin coupling in the solid state: crystalline and glassy wollastonite CaSiO\(_{3}\). J. Phys. Chem. C 113, 2562–2572 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Menziani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pedone, A., Menziani, M.C. (2015). Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship Perspective. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_5

Download citation

Publish with us

Policies and ethics