Skip to main content

Thermally Dominated Deep Mantle LLSVPs: A Review

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The two large low shear-wave velocity provinces (LLSVPs) that dominate lower-mantle structure may hold key information on Earth’s thermal and chemical evolution. It is generally accepted that these provinces are hotter than background mantle and are likely the main source of mantle plumes. Increasingly, it is also proposed that they hold a dense (primitive and/or recycled) compositional component. The principle evidence that LLSVPs may represent thermo-chemical ‘piles’ comes from seismic constraints, including the following: (i) their long-wavelength nature; (ii) sharp gradients in shear-wave velocity at their margins; (iii) non-Gaussian distributions of deep mantle shear-wave velocity anomalies; (iv) anti-correlated shear-wave and bulk-sound velocity anomalies (and elevated ratios between shear- and compressional-wave velocity anomalies); (v) anti-correlated shear-wave and density anomalies ; and (vi) 1-D/radial profiles of seismic velocity that deviate from those expected for an isochemical, well-mixed mantle. In addition, it has been proposed that hotspots and the reconstructed eruption sites of large igneous provinces correlate in location with LLSVP margins. In this paper, we review recent results which indicate that the majority of these constraints do not require thermo-chemical piles: they are equally well (or poorly) explained by thermal heterogeneity alone. Our analyses and conclusions are largely based on comparisons between imaged seismic structure and synthetic seismic structures from a set of thermal and thermo-chemical mantle convection models, which are constrained by ~300 Myr of plate motion histories. Modelled physical structure (temperature, pressure and composition) is converted into seismic velocities via a thermodynamic approach that accounts for elastic, anelastic and phase contributions and, subsequently, a tomographic resolution filter is applied to account for the damping and geographic bias inherent to seismic imaging . Our results indicate that, in terms of large-scale seismic structure and dynamics, these two provinces are predominantly thermal features and, accordingly, that chemical heterogeneity is largely a passive component of lowermost mantle dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfè D, Gillan MJ, Price GD (2007) Temperature and composition of the Earth’s core. Contemp Phys 48:63–80. doi:10.1080/00107510701529653

    Google Scholar 

  • Allègre C, Manhes G, Lewin E (2001) Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet Sci Lett 185:49–69. doi:10.1016/S0012-821X(00)00359-9

    Google Scholar 

  • Allègre CJ, Brevart O, Dupre B, Minster JF (1980) Isotopic and chemical effects produced in a continuously differentiating convecting Earth mantle. Philos Trans R Soc Lond Ser A 297:447–477. doi:10.1098/rsta.1980.0225

  • Allègre CJ, Hofmann AW, O’Nions RK (1996) The Argon constraints on mantle structure. Geophys Res Lett 23:3555–3557. doi:10.1029/96GL03373

    Google Scholar 

  • Allègre CJ, Staudacher T, Sarda P (1987) Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet Sci Lett 81:127–150. doi:10.1016/0012821X(87)90151-8

    Google Scholar 

  • Ammann MW, Brodholt JP, Wookey J, Dobson DP (2010) First-principles constraints on diffusion in lower-mantle minerals and a weak D’’ layer. Nature 465:251–267. doi:10.1038/nature09052

    Google Scholar 

  • Anderson DL (1982) Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297:391–393. doi:10.1038/297391a0

    Google Scholar 

  • Austermann J, Kaye BT, Mitrovica JX, Huybers P (2014) A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophys J Int. doi:10.1093/gji/ggt500

  • Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin VV, Vankó G, Monaco G (2003) Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791. doi:10.1126/science.1081311

    Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:0 F897

    Google Scholar 

  • Baumgardner JR (1985) Three-dimensional treatment of convective flow in the Earth’s mantle. J Stat Phys 39:501–511. doi:10.1007/BF01008348

    Google Scholar 

  • Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosys 3:0 2001GC000168. doi:10.129/2001GC000168

    Google Scholar 

  • Bijwaard H, Spakman W (2000) Non-linear global P-wave tomography by iterated linearized inversion. Geophys J Int 141:71–82. doi:10.1046/j.1365-246X.2000.00053.x

    Google Scholar 

  • Boehler R (2000) High-pressure experiments and the phase diagram of lower mantle and core materials. Rev Geophys 38:221–245. doi:10.1029/1998RG000053

    Google Scholar 

  • Bower DJ, Gurnis M, Seton M (2013) Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem Geophys Geosys 14:44–63. doi:10.1029/2012GC004267

    Google Scholar 

  • Boyet M, Carlson RW (2005) 142Nd evidence for early (4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581

    Google Scholar 

  • Boyet M, Carlson RW (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm/142Nd systematics. Earth Planet Sci Lett 250:254–268

    Google Scholar 

  • Brandenburg JP, Hauri EH, van Keken PE, Ballentine CJ (2008) A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet Sci Lett 276:1–13. doi:10.1016/j.epsl.2008.08.027

    Google Scholar 

  • Brandenburg JP, van Keken PE (2007) Deep storage of oceanic crust in a vigorously convecting mantle. J Geophys Res 112:0 B06403. doi:10.1029/2006JB004813

  • Brodholt JP, Hellfrich G, Trampert J (2007) Chemical versus thermal heterogeneity in the lower mantle: the most likely role of anelasticity. Earth Planet Sci Lett 262:429–437. doi:10.1016/j.epsl.2007.07.054

    Google Scholar 

  • Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J R Astron Soc 66:579–596

    Google Scholar 

  • Buffett BA (2002) Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys Res Lett 29:4. doi:10.1029/2001GL014649

  • Bull AL, McNamara AK, Ritsema J (2009) Synthetic tomography of plume clusters and thermochemical piles. Earth Planet Sci Lett 278:152–156. doi:10.1016/j.epsl.2008.11.018

    Google Scholar 

  • Bunge H-P (2005) Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys Earth Planet Int 153:3–10. doi:10.1016/j.pepi.2005.03.017

    Google Scholar 

  • Bunge H-P, Richards MA, Baumgardner JR (1997) A sensitivity study of 3-D-spherical mantle convection at 108 Rayleigh number: effects of depth-dependent viscosity, heating mode and an endothermic phase change. J Geophys Res 102:11991–12007. doi:10.1029/96JB03806

    Google Scholar 

  • Bunge HP, Richards MA, Baumgardner JR (2002) Mantle circulation models with sequential data-assimilation: inferring present-day mantle structure from plate motion histories. Philos Trans R Soc Lond Set A 360:2545–2567. doi:10.1098/rsta.2002.1080

  • Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume generation zones at the margins of large low shear-wave velocity provinces on the core–mantle–boundary. Earth Planet Sci Lett 265:49–60. doi:10.1016/j.epsl.2007.09.042

    Google Scholar 

  • Cammarano F, Goes S, Deuss A, Giardini D (2005) Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet Sci Lett 232:227–243

    Google Scholar 

  • Cammarano F, Marquardt H, Speziale S, Tackley PJ (2010) Role of iron-spin transition in ferropericlase on seismic interpretation: a broad thermochemical transition in the mid mantle? Geophys Res Lett 37. doi:10.1029/2009GL041583

  • Cammarano F, Romanowicz B (2007) Insights into the nature of the transition zone from physically constrained inversion of long period seismic data. PNAS-High Press Geosci 104:9139–9144

    Google Scholar 

  • Campbell IH, Griffiths RW (1992) The changing nature of mantle hotspots through time: implications for the geochemical evolution of the mantle. J Geology 100:497–523

    Google Scholar 

  • Campbell IH, O’Neill HC (2012) Evidence against a chondritic earth. Nature 483:553–558. doi:10.1038/nature10901

    Google Scholar 

  • Caro G (2015) Chemical geodynamics in a non-chondritic Earth. In: Khan A, Deschamps F (eds)The Earth's Heterogeneous Mantle, Springer, Cham (this Volume)

    Google Scholar 

  • Caro G, Bourdon B (2010) Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle-crust system. Geochim Cosmochim Acta 74:3333–3349

    Google Scholar 

  • Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic crust in the mantle. J Geophys Res 99:19867–19884

    Google Scholar 

  • Cobden L, Goes S, Cammarano F, Connolly JAD (2008) Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophys J Int 175:627–648. doi:10.1111/j.1365-246X.2008.03903.x

    Google Scholar 

  • Cobden L, Thomas C, Trampert J (2015) Seismic detection of post-perovskite inside the earth. In: Khan A, Deschamps F (eds) The earth's heterogeneous mantle, Springer, Cham. (this Volume)

    Google Scholar 

  • Cobden L, Goes S, Ravenna M, Styles E, Cammarano F, Gallagher K, Connolly JAD (2009) Thermochemical interpretation of 1-D seismic data for the lower mantle: the significance of non-adiabatic thermal gradients and compositional heterogeneity. J Geophys Res 114:B11309. doi:10.1029/2008JB006262

  • Coltice N, Ricard Y (1999) Geochemical observations and one layer mantle convection. Earth Planet Sci Lett 174:125–137

    Google Scholar 

  • Crotwell HP, Owens TJ, Ritsema J (1999) The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol Res Lett 70:154–160. doi:10.1785/gssrl.70.2.154

    Google Scholar 

  • da Silva CRS, Wentzcovitch RM, Patel A, Price GD, Karato SI (2000) The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite. Earth Planet Sci Lett 118:103–109. doi:10.1016/S0031-9201(99)00133-8

    Google Scholar 

  • Davaille A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–760

    Google Scholar 

  • Davies GF (1999) Dynamic Earth: plates, plumes and mantle convection. Cambridge University Press, Cambridge. ISBN 9780521599337

    Google Scholar 

  • Davies GF (2009) Reconciling the geophysical and geochemical mantles: plume flows, heterogeneities and disequilibrium. Geochem Geophy Geosyst 10:Q10008. doi:10.1029/2009GC002634

  • Davies GF (2011) Dynamical geochemistry of the mantle. Solid Earth 2:159–189. doi:10.5194/se-2-159-2011

    Google Scholar 

  • Davies DR, Davies JH (2009) Thermally–driven mantle plumes reconcile multiple hotspot observations. Earth Planet Sci Lett 278:50–54. doi:10.1016/j.epsl.2008.11.027

    Google Scholar 

  • Davies DR, Davies JH, Bollada PC, Hassan O, Morgan K, Nithiarasu P (2013) A hierarchical mesh refinement technique for global 3D spherical mantle convection modelling. Geosci Mod Dev 6:1095–1107. doi:10.5194/gmd-6-1095-2013

    Google Scholar 

  • Davies DR, Goes S, Davies JH, Schuberth BSA, Bunge H-P, Ritsema J (2012) Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet Sci Lett 353–354:253–269. doi:10.1016/j.epsl.2012.08.016

    Google Scholar 

  • Davies DR, Goes S, Sambridge M (2015) On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth Planet Sci Lett 411:121–130

    Google Scholar 

  • Davies JH, Bunge HP (2001) Seismically ‘fast’ geodynamic mantle models. Geophys Res Lett 28:73–76

    Google Scholar 

  • de Koker N (2010) Thermal conductivity of MgO at high pressure: implications for the D” region. Earth Planet Sci Lett 292:392–398

    Google Scholar 

  • Deschamps F, Cobden L, Tackley PJ (2012) The primitive nature of large low shear-wave velocity provinces. Earth Planet Sci Lett 349–350:198–208. doi:10.1016/j.epsl.2012.07.012

    Google Scholar 

  • Deschamps F, Kaminski E, Tackley PJ (2011) A deep mantle origin for the primitive signature of ocean island basalt. Nature Geosci 4:879–882. doi:10.1038/NGEO1295

    Google Scholar 

  • Deschamps F, Li Y, Tackley PJ (2015) Large-scale thermo-chemical structure of 1 the deep mantle: observations and models. In: Khan A, Deschamps F (eds) The Earth's Heterogeneous Mantle, Springer, Cham (this Volume)

    Google Scholar 

  • Deschamps F, Tackley PJ (2008) Exploring the model space of thermo-chemical convection: (i) principles and influence of the rheological parameters. Phys Earth Planet Int 171:357–373

    Google Scholar 

  • Deschamps F, Tackley PJ (2009) Searching for models of thermo-chemical convection that explain probabilistic tomography: (ii) influence of physical and compositional parameters. Phys Earth Planet Int 176:1–18

    Google Scholar 

  • Deschamps F, Trampert J (2004) Towards a lower mantle reference temperature and composition. Earth Planet Sci Lett 222:161–175

    Google Scholar 

  • Duffy TS, Anderson DL (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys Res 940(B2):1895–1912. doi:10.1029/JB094iB02p01895

  • Duncan RA, Richards MA (1991) Hotspots, mantle plumes, flood basalts and true polar wander. Rev Geophys 29:31–50

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356

    Google Scholar 

  • Dziewonski AM, Hager BH, O’Connell RJ (1977) Large-scale heterogeneities in the lower mantle. J Geophys Res 82:239–255

    Google Scholar 

  • Dziewonski AM, Lekic V, Romanowicz BA (2010) Mantle anchor structure: an argument for bottom up tectonics. Earth Planet Sci Lett 299:69–79

    Google Scholar 

  • Forte AM, Mitrovica JX (2001) Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410:1049–1056

    Google Scholar 

  • Fukao Y, Obayashi M (2013) Subducted slabs stagnant above, penetrating through and trapped below the 660 km discontinuity. J Geophys Res 118:5920–5938. doi:10.1002/2013JB010466

    Google Scholar 

  • Garel F, Goes S, Davies DR, Davies JH, Kramer SC, Wilson CR (2014) Interaction of subducted slabs with the mantle transition-zone: a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochem Geophys Geosys 15. doi:10.1002/2014GC005257

  • Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth’s lower mantle. Science 320:626–628

    Google Scholar 

  • Glatzmaier GA, Roberts PH (1995) A 3-D self–consistent computer simulation of a geomagnetic field reversal. Nature 377:203–209

    Google Scholar 

  • Goes S, Cammarano F, Hansen U (2004) Synthetic seismic signature of thermal mantle plumes. Earth Planet Sci Lett 218:403–419. doi:10.1016/S0012-821X(03)00680-0

    Google Scholar 

  • Grand S, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography: a snapshot of mantle convection in the Earth. GSA Today 7:1–7

    Google Scholar 

  • Gubbins D, Alfè D, Masters G, Price GD, Gillan M (2004) Gross thermodynamics of two–component core convection. Geophys J Int 157:1407–1414. doi:10.1111/j.1365-246X.2004.02219.x

    Google Scholar 

  • Gurnis M, Mitrovica JX, Ritsema J, van Heijst HJ (2000) Constraining mantle density structure using geological evidence of surface uplift rates: the case of the African superplume. Geochem Geophys Geosys 1:1999GC000035

    Google Scholar 

  • Hager BH, Clayton RW, Richards MA, Comer RP, Dziewonski AM (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313:541–545. doi:10.1038/313541a0

    Google Scholar 

  • Hanan BB, Graham DW (1996) Lead and helium isotopic evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991–995. doi:10.1126/science.272.5264.991

    Google Scholar 

  • He Y, Wen L (2009) Structural features and shear–velocity structure of the ‘Pacific anomaly’. J Geophys Res 114:B02309. doi:10.1029/2008JB005814

  • Hernlund JW, Houser C (2008) On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet Sci Lett 265:423–437. doi:10.1016/j.epsl.2007.10.042

    Google Scholar 

  • Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post–perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434:882–886

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229. doi:10.1038/385219a0

    Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise Geochem 2:61–101

    Google Scholar 

  • Houser C, Masters G, Shearer P, Laske G (2008) Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys J Int 174:195–212. doi:10.1111/j.1365-246X.2008.03763.x

    Google Scholar 

  • Huang J, Davies GF (2007a) Stirring in three-dimensional mantle convection models and implications for geochemistry: heavy tracers. Geochem Geophys Geosyst 8:Q07004. doi:10.1029/2007GC001621

  • Huang J, Davies GF (2007b) Stirring in three-dimensional mantle convection models and implications for geochemistry: passive tracers. Geochem Geophys Geosyst 8:Q03017. doi:10.1029/2006GC001312

  • Hunt SA, Davies DR, Walker AM, McCormack RJ, Wills AS, Dobson DP, Li L (2012) On the increase in thermal diffusivity caused by the perovskite to post-perovskite phase transition and its implications for mantle dynamics. Earth Planet Sci Lett 319:96–103. doi:10.1016/j.epsl.2011.12.009

    Google Scholar 

  • Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285:1231–1236. doi:10.1126/science.285.5431.1231

    Google Scholar 

  • Jackson I (1998) Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophys J Int 134:291–311. doi:10.1046/j.1365-246x.1998.00560.x

    Google Scholar 

  • Jackson MG, Carlson R (2011) An ancient recipe for flood basalt genesis. Nature 476:316–319. doi:10.1038/nature10326

    Google Scholar 

  • Jackson MH, Carlson R, Kurz MD, Kempton PD, Francis D, Blusztajn J (2010) Evidence for the survival or the oldest terrestrial mantle reservoir. Nature 466:853–856

    Google Scholar 

  • Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the Earth: enstatite chondrite models. Earth Planet Sci Lett 2930(3–4):259–268. doi: 10.1016/j.epsl.2010.02.033

  • Jeanloz R, Morris S (1987) Is the mantle geotherm sub–adiabatic? Geophys Res Lett 143:335–338

    Google Scholar 

  • Jellinek AM, Manga M (2002) The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418:760–763. doi:10.1038/nature00979

    Google Scholar 

  • Karato S-I (1993) The importance of anelasticity in the interpretation of seismic tomography. Geophys Res Lett 20:1623–1626

    Google Scholar 

  • Karato S-I (2008) Deformation of Earth materials: an introduction to the rheology of solid Earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Karato S-I, Karki BB (2001) Origin of lateral variation of seismic wave velocities and density in the deep mantle. J Geophys Res 106:21771–21783

    Google Scholar 

  • Kellogg LH, Hager BH, van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881–1884. doi:10.1126/science.283.5409.1881

    Google Scholar 

  • Kennett BLN, Engdahl R, Buland R (1995) Constraints on seismic velocities in the Earth from travel–times. Geophys J Int 122:108–124. doi:10.1111/j.1365-246X.1995.tb03540.x

    Google Scholar 

  • Kennett BLN, Widiyantoro S, van der Hilst RD (1998) Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J Geophys Res 103:12469–12493

    Google Scholar 

  • Khan A, Connolly JAD, Taylor SR (2008) Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth’s mantle. J Geophys Res 113:B09308. doi:10.1029/2007JB005239

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of Earth’s mantle. Nature 450:866–869. doi:10.1038/nature06355

    Google Scholar 

  • Lay T, Hernlund J, Buffett BA (2008) Core–mantle–boundary heat flow. Nature Geosci 1:25–32. doi:10.1038/ngeo.2007.44

    Google Scholar 

  • Leng W, Zhong S (2008) Controls on plume heat flux and plume excess temperature. J Geophys Res 113. doi:10.1029/2007JB005155

  • Li C, van der Hilst RD, Engdahl ER, Burdick S (2008) A new global model for P-wave speed variations in Earth’s mantle. Geochem Geophys Geosys 5. doi:10.1029/2007GC001806

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 2. implications for global geodynamics. J Geophys Res 112:B03212. doi:10.1029/2005JB004224

  • Malcolm AE, Trampert J (2011) Tomographic errors from wave front healing: more than just a fast bias. Geophys J Int 185:385–402. doi:10.1111/j.1365-246X.2011.04945.x

    Google Scholar 

  • Masters G, Gubbins D (2003) On the resolution of density within the Earth. Phys Earth Planet Int 140:159–167

    Google Scholar 

  • Masters G, Laske G, Bolton H, Dziewonski AM (2000) The relative behavior of shear-wave velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. AGU Monogr Earth’s Deep Inter 171:63–87

    Google Scholar 

  • Matas J, Bass J, Ricard Y, Mattern E, Bukowinski MST (2007) On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys J Int 170:764–780. doi:10.1111/j.1365-246X.2007.03454.x

    Google Scholar 

  • Matas J, Bukowinski MST (2007) On the anelastic contribution to the temperature dependence of lower mantle seismic velocities. Earth Planet Sci Lett 259:51–65. doi:10.1016/j.epsl.2007.04.028

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McNamara AK, Zhong S (2004) Thermochemical structures within a spherical mantle. J Geophys Res 109:B07402. doi:10.1029/2003JB002847

  • McNamara AK, Zhong S (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437:1136–1139. doi:10.1038/nature04066

    Google Scholar 

  • Montelli R, Nolet G, Masters G, Dahlen FA, Hung S-H (2004) Global P and PP traveltime tomography: rays versus waves. Geophys J Int 158:630–654

    Google Scholar 

  • Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J (2012) Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J Geophys Res 117:B06304. doi:10.1029/2011JB008851

  • Nakagawa T, Tackley PJ (2004) Effects of a perovskite–post perovskite phase change near core–mantle–boundary in compressible mantle convection. Geophys Res Lett 31:L16611. doi:10.1029/2004GL020648

  • Nakagawa T, Tackley PJ, Deschamps F, Connolly JAD (2010) The influence of MORB and Harzburgite composition on thermo-chemical mantle convection in a 3D spherical shell with self-consistently calculated mineral physics. Earth Planet Sci Lett 296:403–412. doi:10.1016/j.epsl.2010.05.026

    Google Scholar 

  • Ni SD, Tan E, Gurnis M, Helmberger DV (2002) Sharp sides to the African superplume. Science 296:1850–1852. doi:10.1126/science.1070698

    Google Scholar 

  • Olson P, Deguen R, Hinnov LA, Zhong SJ (2013) Controls on geomagnetic reversals and core evolution by mantle convection in the phanerozoic. Phys Earth Planet Int 214:87–103. doi:10.1016/j.pepi.2012.10.003

    Google Scholar 

  • Ranalli S (1995) Rheology of the Earth. Chapman & Hall, London

    Google Scholar 

  • Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett 271:14–23. doi:10.1016/j.epsl.2008.02.028

    Google Scholar 

  • Ricard Y, Richards MA, Lithgow-Bertelloni C, LeStunff Y (1993) A geodynamic model of mantle mass heterogeneities. J Geophys Res 98:21895–21909

    Google Scholar 

  • Ricard Y, Chambat F, Lithgow-Bertelloni C (2006) Gravity observations and 3-D structure of the Earth. CR Geosci 338:992–1001

    Google Scholar 

  • Richards MA, Engebretson DC (1992) Large-scale mantle convection and the history of subduction. Nature 355:437–440. doi:10.1029/2007JB005155

    Google Scholar 

  • Ritsema J, Ni S, Helmberger DV, Crotwell HP (1998) Evidence for strong shear-wave velocity reductions and velocity gradients in the lower mantle beneath Africa. Geophys Res Lett 25:4245–4248

    Google Scholar 

  • Ritsema J, van Heijst HJ (2002) Constraints on the correlation of P- and S-wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes. Geophys J Int 149:482–489. doi:10.1046/j.1365-246X.2002.01631.x

    Google Scholar 

  • Ritsema J, McNamara AK, Bull A (2007) Tomographic filtering of geodynamic models: implications for model interpretation and large-scale mantle structure. J Geophys Res 112. doi:10.1029/2006JB004566

  • Ritsema J, van Heijst HJ, Deuss A, Woodhouse JH (2011) S40RTS: a degree–40 shear-wave velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltimes, and normal–mode splitting function measurements. Geophys J Int 184:1223–1236. doi:10.1111/j.1365-246X.2010.04884.x

    Google Scholar 

  • Robertson GS, Woodhouse JH (1995) Evidence for proportionality of P and S heterogeneity in the lower mantle. Geophys J Int 123:85–116

    Google Scholar 

  • Romanowicz B (2001) Can we resolve 3-D density heterogeneity in the lower mantle? Geophys Res Lett 28:1107–1110

    Google Scholar 

  • Saltzer RL, van der Hilst RD, Karason H (2001) Comparing P and S wave heterogeneity in the mantle. Geophys Res Lett 28:1335–1338

    Google Scholar 

  • Schaeffer N, Manga M (2001) Interaction of rising and sinking mantle plumes. Geophys Res Lett 28:455–458

    Google Scholar 

  • Schuberth BSA, Bunge H-P, Ritsema J (2009a) Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochem Geophys Geosyst 10:Q05W03. doi:10.1029/2009GC002401

  • Schuberth BSA, Bunge H-P, Steinle-Neumann G, Moder C, Oeser J (2009b) Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: high plume excess temperatures in the lowermost mantle. Geochem Geophys Geosyst 10:Q01W01. doi:10.1029/2008GC002235

  • Schuberth BSA, Zaroli C, Nolet G (2012) Synthetic seismograms for a synthetic Earth: long-period P- and S-wave traveltime variations can be explained by temperature alone. Geophys J Int 200:1393–1412. doi:10.1111/j.1365-246X.2011.05333.x

    Google Scholar 

  • Shephard GE, Bunge H-P, Schuberth BSA, Muller RD, Talsma AS, Moder C, Landgrebe TCW (2012) Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure. Earth Planet Sci Lett 317:204–217. doi:10.1016/j.epsl.2011.11.027

    Google Scholar 

  • Simmons NA, Forte AM, Boschi L, Grand SP (2010) GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J Geophys Res 115. doi:10.1029/2010JB007631

  • Simmons NA, Myers SC, Johannesson G (2011) Global-scale p wave tomography optimized for prediction of teleseismic and regional traveltime for middle east events: 2. tomographic inversion. J Geophys Res 116:B04305. doi:10.1029/2010JB007969

  • Sramek O, McDonough WF, Kite ES, Lekic V, Dye ST, Zhong S (2013) Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle. Earth Planet Sci Lett 361:356–366

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Google Scholar 

  • Stampfli GM, Hochard C (2009) Plate tectonics of the Alpine realm. Geol Soc London Spec Publ 327:89–111

    Google Scholar 

  • Stegman DR, Jellinek AM, Zatman SA, Baumgardner JR, Richards MA (2003) An early lunar core dynamo driven by thermochemical mantle convection. Nature 421:143–146

    Google Scholar 

  • Steinberger B (2000) Plumes in a convecting mantle: models and observations for individual hotspots. J Geophys Res 105:11127–11152

    Google Scholar 

  • Steinberger B, Torsvik TH (2012) A geodynamic model of plumes from the margins of large low shear-wave velocity provinces. Geochem Geophys Geosyst 13:Q01W09. doi:10.1029/2011GC003808

  • Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals—i. physical properties. Geophys J Int 162:610–632. doi:10.1111/j.1365-246X.2005.02642.x

    Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2007) Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci Lett 263:45–55. doi:10.1016/j.epsl.2007.08.027

    Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—ii. phase equilibria. Geophys J Int 184:1180–1213. doi:10.1111/j.1365-246X.2010.04890.x

    Google Scholar 

  • Styles E, Davies DR, Goes S (2011) Mapping spherical seismic into physical structure: biases from 3-D phase-transition and thermal boundary-layer heterogeneity. Geophys J Int 184:1371–1378. doi:10.1111/j.1365-246X.2010.04914.x

    Google Scholar 

  • Su WJ, Dziewonski AM (1997) Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys Earth Planet Int 100:135–156

    Google Scholar 

  • Tackley PJ (1998) Three–dimensional simulation of mantle convection with a thermo–chemical boundary layer: D’’? In: Gurnis M, Wysession ME, Knittle E, Buffet BA (eds) The core–mantle–boundary region. AGU, Washington DC, pp 231–253

    Google Scholar 

  • Tackley PJ (2002) Strong heterogeneity caused by deep mantle layering. Geochem Geophys Geosyst 3:1024. doi:10.1029/2001GC000167

    Google Scholar 

  • Tackley PJ (2007) Mantle geochemical geodynamics. Treatise Geophys 7: 437–505

    Google Scholar 

  • Tackley PJ, King SD (2003) Testing the tracer ratio method for modelling active compositional fields in mantle convection simulations. Geochem Geophys Geosyst 4:8302. doi:10.1029/2001GC000214

  • Tackley PJ, Xie S, Nakagawa T, Hernlund JW (2005). Numerical and laboratory studies of mantle convection: philosophy, accomplishments and thermo-chemical structure and evolution. In: Earth’s deep mantle: structure, composition, and evolution, vol 160. Geophysical Monograph Series, AGU, Washington DC, pp 83–99. doi:10.1029/1160GM1007

  • Tan E, Gurnis M, Han LJ (2002) Slabs in the lower mantle and their modulation of plume formation. Geochem Geophys Geosyst 3:1067. doi:10.1029/2001GC000238

    Google Scholar 

  • Tan E, Leng W, Zhong S, Gurins M (2011) On the location of plumes and mobility of thermo–chemical structures with high bulk modulus in the 3-D compressible mantle. Geochem Geophys Geosyst 12:Q07005. doi:10.1029/2011GC003665

  • Thorne MS, Garnero EJ, Grand SP (2004) Geographic correlation between hotspots and deep mantle lateral shear–wave velocity gradients. Phys Earth Planet Int 146:47–63. doi:10.1016/j.pepi.2003.09.026

    Google Scholar 

  • To A, Romanowicz B, Capdeville Y, Takeuchi N (2005) 3-D effects of sharp boundaries at the borders of the African and Pacific superplumes: observation and modeling. Earth Planet Sci Lett 233:137–153. doi:10.1016/j.epsl.2005.01.037

    Google Scholar 

  • Torsvik TH, Smethurst MA, Burke K, Steinberger B (2006) Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys J Int 167:1447–1460. doi:10.1111/j.1365-246X.2006.03158.x

    Google Scholar 

  • Torsvik TH, Muller RD, van der Voo R, Steinberger B, Gaina C (2008a) Global plate motion frames: towards a unified model. Rev Geophys 46:1–44. doi:10.1029/2007RG000227

  • Torsvik TH, Smethurst MA, Burke K, Steinberger B (2008b) Long term stability in deep mantle structure: evidence from the ~300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). Earth Planet Sci Lett 267:444–452. doi:10.1016/j.epsl.2007.12.004

  • Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core-mantle-boundary. Nature 466:352–358. doi:10.1038/nature09216

    Google Scholar 

  • Tosi N, Yuen DA, Cadek O (2010) Dynamical consequences in the lower mantle with the post-perovskite phase change and strongly depth–dependent thermodynamic and transport properties. Earth Planet Sci Lett 298:229–243. doi:10.1016/j.epsl.2010.08.001

    Google Scholar 

  • Trampert J, Deschamps F, Resovsky J, Yuen D (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306:853–856. doi:10.1126/science.1101996

    Google Scholar 

  • Trampert J, Vacher P, Vlaar N (2001) Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle. Phys Earth Planet Int 124:255–267. doi:10.1016/S0031-9201(01)00201-1

    Google Scholar 

  • Trieloff M, Kunz J, Clague DA, Harrison D, Allègre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1038. doi:10.1126/science.288.5468.1036

    Google Scholar 

  • van der Hilst RD, de Hoop MV, Wang P, Shim SH, Ma P, Tenorio L (2007) Seismostratigraphy and thermal structure of Earth’s core–mantle–boundary region. Science 315:1813–1817. doi:10.1126/science.1137867

    Google Scholar 

  • van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584. doi:10.1038/386578a0

    Google Scholar 

  • Walter MJ, Nakamura E, Tronnes RG, Frost DJ (2004) Experimental constraints on crystallisation differentiation in a deep magma ocean. Geochim Cosmo Acta 68:4267–4284. doi:10.1016/j.gca.2004.03.014

    Google Scholar 

  • Wang Y, Wen L (2004) Mapping the geometry and geographic distribution of a very-low velocity province at the base of the Earth’s mantle. J Geophys Res 109:B10305. doi:10.1029/2003JB002674

  • Wang Y, Wen L (2007) Geometry and P and S velocity structure of the ‘African anomaly’. J Geophys Res 112. doi:10.1029/2006JB004483

  • Wasserburg GJ, De Paolo DJ (1979) Models of Earth structure inferred from neodymium and strontium isotopic abundances. Proc Natl Acad Sci USA 76:3594–3598

    Google Scholar 

  • Wolstencroft M, Davies JH, Davies DR (2009) Nusselt–rayleigh number scaling for spherical shell earth mantle simulation up to a rayleigh number of 109. Phys Earth Planet Inter 176:132–141

    Google Scholar 

  • Woodhouse J, Dziewonski A (1989) Seismic modeling of the Earth’s large scale 3-D structure. Phil Trans Roy Soc 328:291. doi:10.1098/rsta.1989.0037

  • Wookey J, Stackhouse S, Kendall J-M, Brodholt J, Price GD (2005) Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438:1004–1007. doi:10.1038/nature04345

    Google Scholar 

  • Xie S, Tackley PJ (2004) Evolution of helium and argon isotopes in a convecting mantle. Phys Earth Planet Int 146:417–439

    Google Scholar 

  • Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79

    Google Scholar 

  • Zhang N, Zhong SJ (2011) Heat fluxes at the Earth’s surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet Sci Lett 306:205–216. doi:10.1016/j.epsl.2011.04.001

    Google Scholar 

  • Zhang N, Zhong SJ, Leng W, Li ZX (2010) A model for the evolution of Earth’s mantle structure since the early Paleozoic. J Geophys Res 115:B06401. doi:10.1029/2009JB006896

  • Zhao D, Lei J (2003) Seismic ray path variations in a 3D global velocity model. Phys Earth Planet Int 141:153–166. doi:10.1016/j.pepi.2003.11.010

    Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571. doi:10.1146/annurev.ea.14.050186.002425

    Google Scholar 

Download references

Acknowledgments

DRD was partially funded by Fellowships from NERC (NE/H015329/1) and the ARC (FT140101262). Numerical simulations were undertaken on: (i) HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd, at the University of Edinburgh, Cray Inc., and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High End Computing Program; and (ii) the NCI National Facility in Canberra, Australia , which is supported by the Australian Commonwealth Government. Authors would like to thank Lars Stixrude and Carolina Lithgow-Bertelloni for providing the lookup tables used in converting models from physical structure to seismic velocity; and Jeroen Ritsema for providing S40RTS’ resolution operator. Authors benefited from discussion with Huw Davies, Jeroen Ritsema, Hans-Peter Bunge, Bernhard Schuberth, Julie Prytulak, Brian Kennett, Ian Campbell and Geoff Davies. Authors would like to thank two anonymous reviewers for constructive comments on this manuscript, as well as Frederic Deschamps for editorial input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Davies, D.R., Goes, S., Lau, H.C.P. (2015). Thermally Dominated Deep Mantle LLSVPs: A Review. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_14

Download citation

Publish with us

Policies and ethics