Skip to main content

Scene Understanding for Auto-Calibration of Surveillance Cameras

  • Conference paper
  • 2491 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8888))

Abstract

In the last decade, several research results have presented formulations for the auto-calibration problem. Most of these have relied on the evaluation of vanishing points to extract the camera parameters. Normally vanishing points are evaluated using pedestrians or the Manhattan World assumption i.e. it is assumed that the scene is necessarily composed of orthogonal planar surfaces. In this work, we present a robust framework for auto-calibration, with improved results and generalisability for real-life situations. This framework is capable of handling problems such as occlusions and the presence of unexpected objects in the scene. In our tests, we compare our formulation with the state-of-the-art in auto-calibration using pedestrians and Manhattan World-based assumptions. This paper reports on the experiments conducted using publicly available datasets; the results have shown that our formulation represents an improvement over the state-of-the-art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Senst, T., Eiselein, V., Badii, A., Einig, M., Keller, I., Sikora, T.: A decentralized privacy-sensitive video surveillance framework. In: 2013 18th International Conference on Digital Signal Processing (DSP), pp. 1–6 (2013)

    Google Scholar 

  2. Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by bayesian inference. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 941–947 (1999)

    Google Scholar 

  3. Liu, J., Collins, R., Liu, Y.: Robust autocalibration for a surveillance camera network. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 433–440 (2013)

    Google Scholar 

  4. Liu, J., Collins, R.T., Liu, Y.: Surveillance camera autocalibration based on pedestrian height distributions. In: Proc. British Machine Vision Conference (2011)

    Google Scholar 

  5. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 304–311 (2009)

    Google Scholar 

  6. Kusakunniran, W., Li, H., Zhang, J.: A direct method to self-calibrate a surveillance camera by observing a walking pedestrian. In: Digital Image Computing: Techniques and Applications, DICTA 2009, pp. 250–255 (2009)

    Google Scholar 

  7. Lv, F., Zhao, T., Nevatia, R.: Camera calibration from video of a walking human. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2006)

    Google Scholar 

  8. Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of manhattan worlds. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2831–2838 (2012)

    Google Scholar 

  9. Liebowitz, D.: Camera Calibration and Reconstruction of Geometry from Images. PhD thesis, University of Oxford, Dept. Engineering Science, D.Phil. thesis (2001)

    Google Scholar 

  10. Evangelio, R.H.: Background Substraction for the Detection of Moving and Static Objects in Video Surveillance. PhD thesis, Technische Universität Berlin (2014)

    Google Scholar 

  11. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

  13. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 147–159 (2004)

    Article  Google Scholar 

  14. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)

    Article  Google Scholar 

  15. Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation 3, 323–344 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Teixeira, L., Maffra, F., Badii, A. (2014). Scene Understanding for Auto-Calibration of Surveillance Cameras. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14364-4_65

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14363-7

  • Online ISBN: 978-3-319-14364-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics