Skip to main content

Multi Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators

  • Chapter
  • First Online:
Book cover Graphene-Based Polymer Nanocomposites in Electronics

Abstract

Graphite and its derivative materials are widely used in fabricating energy harvesters and are known as materials of this generation. The excellent applications of these materials in technology come from their superior electronic properties. Piezoelectric , Actuator and other tactile materials based on graphene have come up with substantially improved properties. The present chapter deals with these aspects of graphene filled polymer nanocomposites where a thorough investigation of the design and properties of them is carried out. Effect of homogeneous distribution of graphene within the matrix, interfacial interaction and functionalization of fillers are discussed to bring dynamic control to nanoscale actuators and piezoelectrics. In addition to explaining the fundamental requirements to make the best piezoelectric and actuator materials, the existing confronts to guide future progress is also undertaken in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov K S, Geim A K,Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004; 306: 666–669.

    Google Scholar 

  2. Rafiee M, Yang J, Kitipornchai S. Thermal bifurcation buckling of carbon nanotube reinforced composite beams. Computers & Mathematics with Applications. 2013; 66: 1147–1160.

    Google Scholar 

  3. Balamurugan V, Narayanan S. A piezoelectric higher-order plate element for the analysis of multilayer smart composite laminates. Smart Materials and Structures. 20007; 16: 2026–2039.

    Google Scholar 

  4. Narayanan S, Balamurugan V. Finite element modeling of piezolaminated smart structures for active vibration control with distributed sensors and actuators. Journal of Soundand Vibration. 2003; 262: 529– 562.

    Google Scholar 

  5. Narayanan S, Balamurgan V. Active control of FGM plates using distributed piezoelectric sensors and actuators. ICTAM04: Proc. 21st Int. Congr. of Theoretical and Applied Mechanics (Warszawa, Poland, Aug. 2004) CDROM.

    Google Scholar 

  6. Morten B, Decicco G, Prudenziati M. Resonant Pressure Sensor Based on Piezoelectric Properties of Ferroelectric Thick-Films. Sensors and Actuators A: Physical. 1992; 31: 153–158.

    Google Scholar 

  7. Jaffe H, Berlincourt D A. Piezoelectric Transducer Materials. Proc. IEEE. 1965; 53: 1372–1386.

    Google Scholar 

  8. Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006; 312: 242–246.

    Google Scholar 

  9. Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures. 2007; 16: R1.

    Google Scholar 

  10. Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors Actuators. 1996; 52: 8 – 11.

    Google Scholar 

  11. Anton S R and Sodano H A 2007 A review of power harvesting using piezoelectric materials (2003–2006) Smart Mater. Struct. 16 R1.

    Google Scholar 

  12. Zhu Y, Zu J, Su W. Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading. Smart Materials and Structures. 2013; 22: 045007.

    Google Scholar 

  13. Ahir S V, Squires A M, Tajbakhsh A R, Terentjev E M. Infrared actuation in aligned polymer-nanotube composites Physical Review B. 2006; 73: 085420.

    Google Scholar 

  14. Bao Z,Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N. Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes. Nature Nanotechnology. 2009; 4: 562–566.

    Google Scholar 

  15. Lee M H, Nicholls H R. Tactile sensing for mechatronics—a state of the art survey. Mechatronics. 1999; 9: 1-31.

    Google Scholar 

  16. Voges U. Laparoscopic technique—which developments are possible? Urologe A. 1996; 3: 208 -214 (in German).

    Google Scholar 

  17. Eltaib M E H, Hewit J R. Tactile sensing technology for minimal access surgery—a review. Mechatronics. 2003; 13: 1163-1177.

    Google Scholar 

  18. Gray B L, Fearing R S, A surface micromachined microtactile sensor array. Proceedings of the IEEE International Conference on Robotics and Automation. 1996; vol. 1: Minneapolis, MN, USA, April 22–28, 1996, pp. 1–6.

    Google Scholar 

  19. Takashima K, Yoshinaka K, Okazaki T, Ikeuchi K. An endoscopic tactile sensor for low invasive surgery. Sensors and Actuator A. 2005; 119: 372 – 383.

    Google Scholar 

  20. Lu S, Panchapakesan B. Photomechanical responses of carbon nanotube/polymer actuators. Nanotechnology 2007;18: 305502.

    Google Scholar 

  21. Lendlein A, Jiang H,Junger O, Langer R.Light-induced shape-memory polymers.Nature2005;434: 879-882.

    Google Scholar 

  22. Jiang H,Kelch S,Lendlein A.Polymers Move in Response to Light.Adv. Mater.2006;18: 1471-1475.

    Google Scholar 

  23. Loomis J, Fan X, Khosravi F, Xu P, Fletcher M, Cohn R W, Panchapakesan B. Graphene/elastomer composite-based photo-thermal nanopositioners. Scientific Reports 2013; 3. 1900; DOI: 10.1038/srep01900.

  24. Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N, Jiang L, Qu L,Graphene Fibers with Predetermined Deformation as Moisture- Triggered Actuators and Robots Angew. Chem. Int. Ed.2013; 52: 10482 –10486.

    Google Scholar 

  25. Hwang T, Kwon H Y, Oh J S, Hong J P, Hong S C, Lee Y, Choi H R, Kim K J, Bhuiya M H, Nam J D. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens. Applied Physics Letters. 2013; 103: 023106.

    Google Scholar 

  26. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y. Infrared-Triggered Actuators from Graphene-Based Nanocomposites, The Journal of Physical Chemistry C. 2009; 113: 9921–9927.

    Google Scholar 

  27. Bi H, Yin K, Xie X, Zhou Y, Wan S, Banhartb A F, Sun L. Microscopic bimetallic actuator based on a bilayer of graphene and graphene oxide. Nanoscale. 2013; 5: 9123 – 9128.

    Google Scholar 

  28. Wang E, Desai M S, Lee S W. Light-Controlled Graphene-Elastin Composite Hydrogel Actuators. Nano Letters. 2013; 13: 2826–2830.

    Google Scholar 

  29. Liang J. J, Huang L, Li N, Huang Y, Wu Y. P, Fang S. L, Oh J, Kozlov M, Ma Y. F, Li F. F, Baughman R, Chen Y. S. Electromechanical Actuator with Controllable Motion, Fast Response Rate, and High-Frequency Resonance Based on Graphene and Polydiacetylene. ACS nano, 2012; 6: 4508–4519.

    Google Scholar 

  30. Ahir S. V, Huang Y, Terentjev E. M. Polymers with aligned carbon nanotubes: Active composite materials. Polymer 2008; 49: 3841-3854.

    Google Scholar 

  31. Levitsky I. A,Kanelos P. T, Woodbury D. S, Euler W. B.Photoactuation from a Carbon Nanotube–Nafion Bilayer Composite.J. Phys. Chem. B2006;110: 9421-9425.

    Google Scholar 

  32. Ahir S. V, Terentjev E. M. Fast Relaxation of Carbon Nanotubes in Polymer Composite Actuators Phys. Rev. Lett. 2006; 96: 133902.

    Google Scholar 

  33. Ahir S. V,Terentjev E. M.Photomechanical actuation in polymer–nanotube compositesNature Mater.2005;4: 491-495.

    Google Scholar 

  34. Yang L, Setyowati K, Li A, Gong S, Chen J. Reversible Infrared Actuation of Carbon Nanotube–Liquid Crystalline Elastomer Nanocomposites. Adv. Mater. 2008; 20: 2271-2275.

    Google Scholar 

  35. Koerner H, Price G, Pearce N. A, Alexander M, Vaia R. A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Mater. 2004; 3: 115-120.

    Google Scholar 

  36. Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature. 1992; 355: 242 - 244.

    Google Scholar 

  37. Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J.Reversible switching of hydrogel-actuated nanostructures into complex micopatterns. Science. 2007; 315: 487 - 490.

    Google Scholar 

  38. Bunch J S, Zande A M Van Der, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L.Electromechanical Resonators from Graphene Sheets. Science. 2007; 315: 490 - 493.

    Google Scholar 

  39. Ikuno T, Honda S I, Yasuda T, Oura K, Katayama M, Lee J G, Mori H. Thermally driven nanomechanical deflection of hybrid nanowires. Applied Physics Letters. 2005; 87: 213104.

    Google Scholar 

  40. Craighead H G. Nanoelectromechanical Systems. Science. 2000; 290: 1532–1535.

    Google Scholar 

  41. Fennimore A M, Yuzvinsky T D, Han W Q, Fuhrer M S., Cumings J, Zettl A. Rotational Actuators Based on Carbon Nanotubes. Nature. 2003; 424: 408–410.

    Google Scholar 

  42. Park S, An J, Suk J W, Ruoff R S. Graphene-Based Actuators. Small. 2010; 6: 210–212.

    Google Scholar 

  43. Muralidharan M N, Ansari S. Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators. Advanced Materials Letters. 2013; 4: 927-932.

    Google Scholar 

  44. Gerratt A. P, Bergbreiter S. Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Mater. Struct. 2013; 22: 014010.

    Google Scholar 

  45. Brochu P, Stoyanov H, Niu X, Pei Q. All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Mater. Struct. 2013; 22: 055022 DOI:10.1088/0964-1726/22/5/055022.

  46. Novoselov K. S, Geim A. K, Morozov S. V, Jiang D, Zhang Y, Dubonos S. V, Grigorieva I. V, Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004; 306: 666-669.

    Google Scholar 

  47. Lotya M, King P. J, Khan U, De S, Coleman J. N. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010; 4: 3155-3162.

    Google Scholar 

  48. Su C. Y, Lu A. Y, Xu Y, Chen F. R, Khlobystov A. N, L L. J. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011; 5: 2332-2339.

    Google Scholar 

  49. Tkachev S. V, Buslaeva E. Y, Gubin S. P. Graphene: A novel carbon nanomaterial. Inorganic Materials 2011; 47: 1-10.

    Google Scholar 

  50. Forbeaux I,Themlin J. M, Debever J. M.Heteroepitaxial graphite on 6H–SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998; 58: 16396-16406.

    Google Scholar 

  51. Cambaz Z. G,Yushin G, Osswald S, Mochalin V, Gogotsi Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 2008; 46: 841-849.

    Google Scholar 

  52. Kim K. S, Zhao Y, Jang H, Lee S. Y, Kim J. M, Kim K. S, Ahn J. H, Kim P, Choi J. Y, Hong B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009; 457: 706-710.

    Google Scholar 

  53. Xuesong L, Cai W. W, An J, Kim S. Y, Nah J, Yang D. X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S. K, Colombl L, Ruoff R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009; 324: 1312-1314.

    Google Scholar 

  54. Zheng W, Lu X, Wong S.C. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 2004; 91: 2781–2788.

    Google Scholar 

  55. Hu H.T, Wang J.C, Wan L, Liu F.M, Zheng H, Chen R, Xu C. H. Preparation and properties of graphene nanosheets – polystyrene nanocomposites via insitu emulsion polymerization. Chem. Phy. Letts.2010; 484: 247–253.

    Google Scholar 

  56. Lee W.D, Im S.S. Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J. Polym. Sci. Pt. B Polym. Phys. 2007; 45: 28–40.

    Google Scholar 

  57. Hussain F, Hojjati M, Okamoto M, Gorga R.E. Review article: polymer–matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 2006; 40: 1511–1575.

    Google Scholar 

  58. Wanga W.P, Pana C.Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 2004; 45: 3987–3995.

    Google Scholar 

  59. Kalaitzidou K, Fukushima H, Drzal L.T. A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 2007; 67: 2045–2051.

    Google Scholar 

  60. Kim S.K, Kim N.H, Lee J.H. Effects of the addition of multiwalled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high density polyethylene nanocomposites. Scripta. Mater. 2006; 55: 1119–1122.

    Google Scholar 

  61. Kim, S.; Do, I.; Drzal, L.T. Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites. Polym. Compos. 2009, 31, 755–761.

    Google Scholar 

  62. Bai S, Xu Q, Gu L, Ma F, Qin Y, Wang Z L, (2012) Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor Nano Energy, DOI: 10.1016/j.nanoen.2012.09.001.

  63. R. Pelrine, R. Kornbluh, Q. B. Pei and J. Joseph, High-speed electrically actuated elastomers with strain greater than 100 %. Science, 2000; 287: 836–839.

    Google Scholar 

  64. Kaneto K, Kaneko M, Min Y, MacDiarmid A. G.“Artificial muscle”: Electromechanical actuators using polyaniline films. Synth. Met. 1995; 71: 2211–2212.

    Google Scholar 

  65. Baughman R. H. Conducting polymer artificial muscles Synth. Met., 1996; 78: 339–353.

    Google Scholar 

  66. Smela E. Conjugated Polymer Actuators for Biomedical Applications. Adv. Mater., 2003; 15: 481–494.151 Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H. Bending of Polyelectrolyte Membrane–Platinum Composites by Electric Stimuli I. Response Characteristics to Various Waveforms. Polym. J., 1995; 27: 436–440.

    Google Scholar 

  67. Shahinpoor M. Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim. Acta, 2003; 48: 2343–2353.

    Google Scholar 

  68. Baughman R. H, Cui C, Zakhidov A. A, Iqbal Z, Barisci J. N, Spinks G. M, Wallace G. G, Mazzoldi A, De Rossi D, Rinzler A. G, Jaschinski O, Roth S, Kertesz M. Carbon Nanotube Actuators. Science, 1999; 284: 1340–1344.

    Google Scholar 

  69. Alamusi, Xue J. M, Wu L. K, Hu N, Qiu J. H, Chang C, Atobe S, Fukunaga H, Watanabe T, Liu Y. L, Ning H. M, Li J. H, Li Y, Zhao Y. H. Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly(vinylidene fluoride) nanocomposites. Nanoscale, 2012; 4: 7250-7255.

    Google Scholar 

  70. Ong M. T, Reed E. J, Engineered Piezoelectricity in Graphene, ACS Nano, 2012: 1387–1394.

    Google Scholar 

  71. Osterlund L, Chakarov D. V, Kasemo B. Potassium Adsorption on Graphite(0001). Surf. Sci. 1999; 420: 174–189.

    Google Scholar 

  72. Virojanadara C,Watcharinyanon S,Zakharov A. A, Johansson L. I. Epitaxial Graphene on 6H-SiC and LiIntercalation. Phys. Rev. B 2010; 82: 205402.

    Google Scholar 

  73. Hussain M, Abbasi M. A, Ibupoto Z. H, Nur O, Willander M. The improved piezoelectric properties of ZnO nanorods with oxygen plasma treatment on the single layer graphene coated polymer substrate, Phys. Status Solidi A, 2014; 211: 455–459.

    Google Scholar 

  74. Yang R, Qin Y, Li C, Zhu G, Wang Z. L. Complex Crystal Structures Formed by the Self-Assembly of Ditethered Nanospheres. NanoLett. 2009; 9: 1201-1205.

    Google Scholar 

  75. Lee J. H, Lee K. Y, Gupta M. K, Kim T. Y, Lee D. Y, Oh J, Ryu C. K, Yoo W. J, Kang C. Y, Yoon S. J, Yoo J. B, Kim S. W. Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator. Adv. Mater. 2014; 26: 765–769.

    Google Scholar 

  76. Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials. 2011; 10, 569–581.

    Google Scholar 

  77. Wu H, Drzal L T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon. 2012; 50: 1135–1145.

    Google Scholar 

  78. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters. 2008; 8: 902–907.

    Google Scholar 

  79. Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters. 2001; 79:2252–2254.

    Google Scholar 

  80. Loomis J, King B, Panchapakesan B. Layer dependent mechanical responses of graphene composites to near-infrared light. Applied Physics Letter. 2012; 100: 073108.

    Google Scholar 

  81. Pelrine R, Kornbluh R, Pei Q, Joseph J. High-Speed Electrically Actuated Elastomers with Strain Greater Than 100 %.Science.2000;287: 836 – 839.

    Google Scholar 

  82. Nam J D, Hwang S D, Choi H R, Lee J H, Kim K J, Heo S. Electrostrictive polymer nanocomposites exhibiting tunable electrical properties. Smart Materials and Structures. 2005; 14: 87.

    Google Scholar 

  83. Son S I, Pugal D, Hwang T, Choi H R, Koo J C, Lee Y, Kim K, Nam J D. Electromechanically driven variable-focus lens based on transparent dielectric elastomer. Applied Optics. 2012; 51: 2987 – 2996.

    Google Scholar 

  84. Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded Permeation of Water through Helium-Leak–Tight Graphene-Based Membranes. Science. 2012; 335: 442 – 444.

    Google Scholar 

  85. Jian Z, Christine M A, Jia D X, Ayyalusamy R, Thomas T, Nicholas A K. Pseudonegative Thermal Expansion and the State of Water in Graphene Oxide Layered Assemblies. ACS Nano.2012; 6: 8357 – 8365.

    Google Scholar 

  86. Lee S K, Jang H Y, Jang S, Choi E, Hong B H, Lee J,Park S, Ahn J H. All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Letters. 2012; 12: 3472 – 3476.

    Google Scholar 

  87. Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S,Choi S Y. Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications. Nano Letters. 2010; 10: 4381 – 4386.

    Google Scholar 

  88. He Q Y, Sudibya H G, Yin Z Y, Wu S X, Li H, Boey F, Huang W, Chen P, Zhang H. Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano. 2010; 4: 3201 – 3208.

    Google Scholar 

  89. Timoshenko S. Analysis of bi-metal thermostats. J. Opt. Soc. Am., 1925; 11: 233-255.

    Google Scholar 

  90. Lo C.W, Zhu D, Jiang H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter. 2011; 7: 5604-5609.

    Google Scholar 

  91. Zhu C. H, Lu Y, Peng J, Chen J.F, Yu S.H. Photothermally Sensitive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves. Adv. Funct.Mater. 2012; 22: 4017–4022.

    Google Scholar 

  92. Lian Y, Liu Y, JiangT, Shu J, Lian H, Cao M. Enhanced Electromechanical Performance of Graphite Oxide-Nafion Nanocomposite Actuator. Journal of Physical Chemistry C. 2010; 114: 9659–9663.

    Google Scholar 

  93. Ramasamy M. S, Mahapatra S. S, Yoo H. J, Kim Y. A, Cho J. W. Soluble conducting polymer-functionalized graphene oxide for air-operable actuator, fabrication. J. Mater. Chem. A, 2014; 2:4788-4794.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehwan Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sadasivuni, K.K., Kafy, A., Zhai, L., Ko, HU., Mun, S.C., Kim, J. (2015). Multi Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_4

Download citation

Publish with us

Policies and ethics