From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors

  • Marcin Budka
  • Mark Eastwood
  • Bogdan Gabrys
  • Petr Kadlec
  • Manuel Martin Salvador
  • Stephanie Schwan
  • Athanasios Tsakonas
  • Indrė Žliobaitė
Conference paper

DOI: 10.1007/978-3-319-12571-8_5

Volume 8819 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Budka M. et al. (2014) From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors. In: Blockeel H., van Leeuwen M., Vinciotti V. (eds) Advances in Intelligent Data Analysis XIII. IDA 2014. Lecture Notes in Computer Science, vol 8819. Springer, Cham

Abstract

Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marcin Budka
    • 1
  • Mark Eastwood
    • 2
  • Bogdan Gabrys
    • 1
  • Petr Kadlec
    • 3
  • Manuel Martin Salvador
    • 1
  • Stephanie Schwan
    • 3
  • Athanasios Tsakonas
    • 1
  • Indrė Žliobaitė
    • 4
  1. 1.Bournemouth UniversityUK
  2. 2.Coventry UniversityUK
  3. 3.Evonik IndustriesGermany
  4. 4.Aalto University and HIITFinland