Skip to main content

Sparse Manifold Subspace Learning

  • Chapter
  • First Online:

Abstract

In this chapter, we introduce a new subspace learning framework called “Sparse Manifold Subspace Learning (SMSL)”. Compared with the conventional methods considering global data structure e.g., PCA, LDA, SMSL aims at preserving the local neighborhood structure on the data manifold and provides a more accurate data representation via locality sparse coding. In addition, it removes the common concerns of many local structure based subspace learning methods e.g., Local Linear Embedding (LLE), Neighborhood Preserving Embedding (NPE), that how to choose appropriate neighbors. SMSL adaptively selects neighbors based on their distances and importance, which is less sensitive to noise than NPE. Moreover, the dual-sparse processes, i.e., the locality sparse coding, and sparse eigen-decomposition in graph embedding yield a noise-tolerant framework. Finally, SMSL is learned in an inductive fashion, and therefore easily extended to different tests. We exhibit experimental results on several databases and demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE TPAMI 19(7), 711–720 (2002)

    Article  Google Scholar 

  2. M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in NIPS (2001)

    Google Scholar 

  3. D.L. Donoho, C. Grimes, Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Natl. Acad. Sci. U.S.A. 100, 5591–5596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Elhamifar, R. Vidal, Sparse manifold clustering and embedding, in NIPS (2011)

    Google Scholar 

  5. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1(4), 586–597 (2007)

    Google Scholar 

  6. X. He, D. Cai, S. Yan, H.J. Zhang, Neighborhood preserving embedding, in IEEE ICCV (2005)

    Google Scholar 

  7. X. He, P. Niyogi, Locality preserving projections, in NIPS (2003)

    Google Scholar 

  8. L.S. Sam Roweis, Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  9. B. Shaw, T. Jebara, Minimum volume embedding, in International Conference on Artificial Intelligence and Statistics (2007)

    Google Scholar 

  10. B. Shaw, T. Jebara, Structure preserving embedding, in ICML (2009)

    Google Scholar 

  11. T. Sim, S. Baker, M. Bsat, The cmu pose, illumination, and expression (pie) database, in IEEE FGR (2002)

    Google Scholar 

  12. J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  13. M. Turk, A. Pentland, Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  14. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in IEEE CVPR (2010)

    Google Scholar 

  15. K. Weinberger, L.K. Saul, Unsupervised learning of image manifolds by semidefinite programming, in IEEE CVPR (2004)

    Google Scholar 

  16. S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, S. Lin, Graph embedding and extension: a general framework for dimensionality reduction. IEEE TPAMI 29, 40–51 (2007)

    Article  Google Scholar 

  17. A.Y. Yang, S.S. Sastry, A. Ganesh, Y. Ma, Fast l1-minimization algorithms and an application in robust face recognition: a review, in ICIP (2010)

    Google Scholar 

  18. K. Yu, T. Zhang, Y. Gong, Nonlinear learning using local coordinate coding, in NIPS, pp. 2223–2231 (2009)

    Google Scholar 

  19. X. Yuan, T. Zhang, Truncated power method for sparse eigenvalue problems. Technical report (2011)

    Google Scholar 

Download references

Acknowledgments

This research is supported in part by the NSF CNS award 1314484, ONR award N00014-12-1-1028, ONR Young Investigator Award N00014-14-1-0484, and U.S. Army Research Office Young Investigator Award W911NF-14-1-0218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shao, M., Ma, M., Fu, Y. (2014). Sparse Manifold Subspace Learning. In: Fu, Y. (eds) Low-Rank and Sparse Modeling for Visual Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-12000-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12000-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11999-1

  • Online ISBN: 978-3-319-12000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics