Skip to main content

Learning to Look: A Dynamic Neural Fields Architecture for Gaze Shift Generation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8681))

Abstract

Looking is one of the most basic and fundamental goal-directed behaviors. The neural circuitry that generates gaze shifts towards target objects is adaptive and compensates for changes in the sensorimotor plant. Here, we present a neural-dynamic architecture, which enables an embodied agent to direct its gaze towards salient objects in its environment. The sensorimotor mapping, which is needed to accurately plan the gaze shifts, is initially learned and is constantly updated by a gain adaptation mechanism. We implemented the architecture in a simulated robotic agent and demonstrated autonomous map learning and adaptation in an embodied setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dean, P., Mayhew, J.E., Langdon, P.: Learning and maintaining saccadic accuracy: A model of brainstem-cerebellar interactions. Journal of Cognitive Neuroscience 6(2), 38–117 (1994)

    Article  Google Scholar 

  3. Gancarz, G., Grossberg, S.: A neural model of saccadic eye movement control explains task-specific adaptation. Vision Research 39(18), 43–3123 (1999)

    Article  Google Scholar 

  4. Girard, B., Berthoz, A.: From brainstem to cortex: computational models of saccade generation circuitry. Progress in Neurobiology 77(4), 215–251 (2005)

    Article  Google Scholar 

  5. Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks 1, 17–61 (1988)

    Article  Google Scholar 

  6. Hopp, J.J., Fuchs, A.F.: The characteristics and neuronal substrate of saccadic eye movement plasticity. Progress in Neurobiology 72(1), 27–53 (2004)

    Article  Google Scholar 

  7. Kopecz, K., Schöner, G.: Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields. Biological Cybernetics 60, 49–60 (1995)

    Article  Google Scholar 

  8. Optican, L.M., Quaia, C.: Distributed model of collicular and cerebellar function during saccades. Annals of the New York Academy of Sciences 956(1), 164–177 (2002)

    Article  Google Scholar 

  9. Panouillères, M., Habchi, O., Gerardin, P., Salemme, R., Urquizar, C., Farne, A., Pélisson, D.: A Role for the Parietal Cortex in Sensorimotor Adaptation of Saccades. Cerebral Cortex (2012)

    Google Scholar 

  10. Pélisson, D., Alahyane, N., Panouillères, M., Tilikete, C.: Sensorimotor adaptation of saccadic eye movements. Neurosci. Biobehav. Rev. 34(8), 1103–1120 (2010)

    Article  Google Scholar 

  11. Quaia, C., Lefèvre, P., Optican, L.M.: Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology 82(2), 999–1018 (1999)

    Google Scholar 

  12. Reuschel, J., Rösler, F., Henriques, D.Y.P., Fiehler, K.: Spatial updating depends on gaze direction even after loss of vision. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 32(7), 9–2422 (2012)

    Article  Google Scholar 

  13. Sandamirskaya, Y., Zibner, S.K.U., Schneegans, S., Schöner, G.: Using Dynamic Field Theory to extend the embodiment stance toward higher cognition. New Ideas in Psychology 31(3), 322–339 (2013)

    Article  Google Scholar 

  14. Schöner, G.: Dynamical Systems Approaches to Cognition. Dynamical Systems (2008)

    Google Scholar 

  15. Schweighofer, N., Arbib, M.A., Dominey, P.F.: A model of the cerebellum in adaptive control of saccadic gain. Biological Cybernetics 75(1), 19–28 (1996)

    Article  MATH  Google Scholar 

  16. Sparks, D.L.: Conceptual issues related to the role of the superior colliculus in the control of gaze. Current Opinion in Neurobiology 9(6), 698–707 (1999)

    Article  Google Scholar 

  17. Srimal, R., Diedrichsen, J., Ryklin, E.B., Curtis, C.E.: Obligatory adaptation of saccade gains. Journal of Neurophysiology 99(3), 8–1554 (2008)

    Article  Google Scholar 

  18. Trappenberg, T.P., Dorris, M.C., Munoz, D.P., Klein, R.M.: A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience 13(2), 71–256 (2001)

    Article  Google Scholar 

  19. Wallman, J., Fuchs, A.F.: Saccadic gain modification: Visual error drives motor adaptation. Journal of Neurophysiology 80(5), 2405–2416 (1998)

    Google Scholar 

  20. Wilimzig, C., Schneider, S., Schöner, G.: The time course of saccadic decision making: dynamic field theory. Neural networks: The official Journal of the International Neural Network Society 19(8), 74–1059 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bell, C., Storck, T., Sandamirskaya, Y. (2014). Learning to Look: A Dynamic Neural Fields Architecture for Gaze Shift Generation. In: Wermter, S., et al. Artificial Neural Networks and Machine Learning – ICANN 2014. ICANN 2014. Lecture Notes in Computer Science, vol 8681. Springer, Cham. https://doi.org/10.1007/978-3-319-11179-7_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11179-7_88

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11178-0

  • Online ISBN: 978-3-319-11179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics