Skip to main content

Characterization of phosphogypsum deposited in Schistos remediated waste site (Piraeus, Greece)

  • Conference paper
  • First Online:
Uranium - Past and Future Challenges

Abstract

The operation of a phosphate fertilizer industry in Drapetsona, near Piraeus port (Greece), resulted in the deposition of 10 million tons of phosphogypsum (PG) into an old limestone quarry, in the period 1979-1989. The whole deposit has been recently remediated using geomembranes and thick soil cover with vegetation. The purpose of the present study was to characterize representative samples of that phosphogypsum, using diffraction (powder-XRD), microscopic (SEM-EDS), analytical (ICP-MS), and spectroscopic techniques (High-resolution γ-ray spectrometry and XRF). The material contains crystalline gypsum (CaSO4.2H2O) and Ca-Si-Al-S-F (chukhrovite-type/meniaylovite) phases. The natural radioactivity is mainly due to the 238U series and particularly 226Ra (average: 462 Bq/kg), which is relatively low compared to PG from the rest of the world. Furthermore, leaching experiments using local (Attica) rainwater, together with ICP-MS, were performed to assess the potential release of elements in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al - Attar, L., Al - Oudat, M., Kauakri, S., Budeir, Y., Khalify, H. (2011) Radio-logical Impacts of phosphogypsum. Journal of Environmental Management 92: 2151-2158

    Google Scholar 

  • Al-Hwaiti, M.S., Ranville, J.F., Ross, P.E. (2010) Bioavailability and mobility of trace metals in phosphogypsum from Aqaba and Eshidiya, Jordan.Chemie der Erde 70: 283-291.

    Google Scholar 

  • Azouazi, M., Ouahidi, Y., Fakhi, S., Andres, Y., Abbe, J.Ch., Benmansour, M. (2001) Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. Journal of Environmental Radioactivity 54: 231-242.

    Google Scholar 

  • Beretka, J. (1990) The current state of utilization of phosphogypsum in Australia. In: Proceedings of the Third International Symposium on Phosphogypsum, Orlando, FL, FIPR Pub. No. 01-060-083, December 1990, vol. II 394-401

    Google Scholar 

  • Berish, C.W. (1990) Potential Environmental hazards of phosphogypsum storage in central Florida. Proceedings of the third international symposium on phosphogypsum. Orlando, FL, FIPR Pub. No.01060083;2: 1-29.

    Google Scholar 

  • Bituh, T., Marovic, G., Franic, Z., Sencar, J., Bronzovic, M. (2009) Radioactive contamination in Croatia by phosphate fertilizer production. Journal of Hazardous Materials 162: 1199-1203

    Google Scholar 

  • Carbonell – Barrachina, A.,DeLaune, R.D., Jugsujinda, A. (2002)Phosphogypsum chemistry under highly anoxic conditions. Waste Management 22 (6): 657-665.

    Google Scholar 

  • Chauhan, P., Chauhan, R.P., Gupta, M. (2013) Estimation of naturally occuring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques.Microchemical Journal 106: 73-78.

    Google Scholar 

  • Coates, Woodward (1966) Similarity between “chukrovite” and the octahedral crystals found in the gypsum in the manufacture of phosphoric acid. Nature: 212-392

    Google Scholar 

  • El-Didamony, H., Gado, H.S., Awwad, N.S., Fawzy, M.M., Attallah, M.F. (2013) Treatment of phosphogypsum waste produced from phosphate ore processing. Journal of Hazardous Materials: 244-245 596-602.

    Google Scholar 

  • EPA, 1998. Code of Federal Regulations, 1998. Title 40, Vol. 7, Parts 61.202 and 61.204

    Google Scholar 

  • (40CFR61.202 and 40CFR61.204).

    Google Scholar 

  • Fourati, A., Faludi, G. (1988) Changes in radioactivity of phosphate rocks during the process of production. Journal of Radioanalytical and Nuclear Chemistry 125: 287-293.

    Google Scholar 

  • Fukuma, H.T., Fernandes, E.A.N, Quinelato, A.L. (2000) Distribution of naturalradionuclides during the processing of phosphate rock from Itataia - Brazil for production of phosphoric acid and uranium concentrate. Radiochim.Acta 88: 809-812.

    Google Scholar 

  • Haridasan, P.P., Maniyan, C.G., Pillai, P.M.B., Khan, A.H. (2002)Dissolution characteristics of 226Ra from phosphogypsum. Journal of Environmental Radioactivity 62: 287-294.Kacimi, L., Simon – Masseron, A., Ghomari, A., Derriche, Z. (2006) Reduction of clinkerization temperature by using phosphogypsum. Journal of Hazardous Materials 137 (1): 129- 137.

    Google Scholar 

  • Kobal, I., Brajnik, D., Kaluza, F., Vengust, M. (1990) Radionuclides in effluents from coal mines, a coal-fired powerplant, and a phosphate processing plant in Zasanje, Slovenia (Yugoslavia). Health Physics 58: 8-85.

    Google Scholar 

  • Laiche, T.P., Scott, M.L. (1991) A radiological evaluation of phosphogypsum. Health Physics 60: 691-693.

    Google Scholar 

  • Li Y.H and Schoonmaker J. (2003) in: F.T. Mackenzie (Ed.)H.D. Holland, K.K. Turekian (Eds.), Sediments, Daigenesis, and Sedimentary Rocks, Treatise on Geochemistry, vol. 7, Elsevier-Pergamon, Oxford (2003) 1–35.

    Google Scholar 

  • Luther, S.M., Dudas, M.J., Rutherford, P.M. (1993) Radioactivity and chemical characteristics of Alberta phosphogypsum. Water, Air, and Soil Pollution 69: 277-290.

    Google Scholar 

  • Mullins, G.L., Mitchell Jr., C.C. (1990) Use of phosphogypsum to increase yield and quality of annual forages. FIPR Pub. No. 01-048-084, Auburn University, 56.

    Google Scholar 

  • Okeji, M.C., Agwu, K.K., Idigo, F.U. (2012) Assessment of natural radioactivity in phosphate ore, phosphogypsum, and soil samples around a phosphate fertilizer plant in Nigeria. Bull Environ Contam Toxico 89:1078–1081

    Google Scholar 

  • Oliveira, S.M.B., Imbernon, R.A.(1998) Weathering alteration and related REE concentration in the Catalao I carbonatite complex, central Brazil. J S Am Ear Sci 11 (4): 379-388.

    Google Scholar 

  • Perez – Lopez, R., Alvarez – Valero, A., Nieto, J.M. (2007)Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J Haz Mat 148: 745-750.

    Google Scholar 

  • Papastefanou, C., Stoulas, S., Ioannidou, A., Manolopoulou, M.(2006) The application of phosphogypsum in agriculture and the radiological impact. J Env Rad 89: 188-198.

    Google Scholar 

  • Roessler, C.E., Smith, Z.A., Bolch, W.E., Prince, R.J. (1979) Uranium and radium-226 in Florida phosphate materials. Health Physics: 37 269-277

    Google Scholar 

  • Roselli, C.,Desideri, D., AssuntaMeli, M. (2009) Radiological characterization of phosphate fertilizers:Comparison between alpha and gamma spectrometry. Mi-crochem J91: 181-186.

    Google Scholar 

  • Rudnick, L.R., Gao,S., (2003) The composition of the continental crust,in: R.L. Rudnick (Ed.)H.D. Holland, K.K. Turekian (Eds.), The Crust, Treatise on Geo-chemistry, vol. 3, Elsevier-Pergamon, Oxford 1–64

    Google Scholar 

  • Rutheford, P.M., Dudas, M.J., Arocena, J.M. (1996) Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Science of the Total Environment 180: 201-209.

    Google Scholar 

  • Shannon, D.R. (1976) Revised Effective Ionic Radii and Systematic Studies of In-teratomic Distances in Halides and Chalcogenides.ActaCryst. A32:. 751-767.

    Google Scholar 

  • Silva, L.F.O., Hower, J. C., Izquierdo, M., Querol, X. (2010) Complex na-nominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Science of the Total Environment 408, pp. 5117 - 5122.

    Google Scholar 

  • TayibiHanan, Chouva Mohamed, Lopez A. Felix, Alguacil J. Francisco, Lopez - Gelgado Aurora(2009) Environmental impact and management of Phosphogypsum. Journal of Environmental Management 90: 2377-2386.

    Google Scholar 

  • Villalobos, M. R., Vioque, I., Mantero, J., Manjon, G. (2010) Radiological, chemical and morphological characterizations of phosphate rock and phosphogyp-sum from phosphoric acid factories in SW Spain. J Haz Mat 181: 193-203.

    Google Scholar 

  • Zielinski, R.A., Al-Hwaiti, M.S (2011) Radionuclides, trace elements, and radium residenceinphosphogypsum of Jordan.EnviGeochem Health 33: 149-165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Papageorgiou, F. et al. (2015). Characterization of phosphogypsum deposited in Schistos remediated waste site (Piraeus, Greece). In: Merkel, B., Arab, A. (eds) Uranium - Past and Future Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-11059-2_31

Download citation

Publish with us

Policies and ethics