Skip to main content

A Semantic Driven Approach for Requirements Verification

  • Conference paper
Intelligent Distributed Computing VIII

Part of the book series: Studies in Computational Intelligence ((SCI,volume 570))

Abstract

Requirements Engineering (RE) is a key discipline for the success of software projects. Consistency, completeness, and accuracy are the requirements quality properties to be guaranteed by the verification task in RE. An overview of the actual trends in RE is briefly summarized, focusing more closely on the requirements verification quality properties. Completeness results is the most difficult property to guarantee. It is hard to capture the software behavior against the whole external context. In the last years, research has focused its attention to the application of semantic Web techniques to the different tasks of RE. The adoption of ontologies seems promising to achieve the proper level of formalism and to argue on quality properties. This paper presents a survey of the main concepts that need to be accounted for requirement verification, and proposes an ontological engineering approach to demonstrate the overlapping of requirements against the external context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SWEBOK Guide to the Software Engineering Body of Knowledge. IEEE Computer Society (2004)

    Google Scholar 

  2. Cheng, B., Atlee, J.: Research Directions in Requirement Engineering. In: FOSE 2007, Future of Software Engineering, pp. 285–303 (2007)

    Google Scholar 

  3. Fanmuy, G., Fraga, A., Llorens, J.: Requirements verification in the industry. In: Hammami, O., Krob, D., Voirin, J.-L. (eds.) Complex Systems Design & Management, vol. 91, pp. 145–160. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Alfor, M., Lawson, J.: Software Requirements Engineering Methodology (Development). TRW Defense and Space Systems Group (1979)

    Google Scholar 

  5. Zave, P.: Classification of Research Efforts in Requirements Engineering. ACM Computing Surveys (CSUR) 29(4), 315–321 (1997)

    Article  Google Scholar 

  6. RTCA, DO-178C. Software Consideration. In: Airborne Systems And Equipment Certification, Washington (December 2011)

    Google Scholar 

  7. Calero, C., Ruiz, F., Piattini, M.: Ontologies in Software Engineering and Software Technology. Springer (2005)

    Google Scholar 

  8. Taye, M.M.: Web-Based Ontology Languages and its Based Description Logics. The Research Bulletin of Jordan ACM II(II), 1–9

    Google Scholar 

  9. Zowghi, D., Gervasi, V.: On the Interplay Between Consistency, Completeness, and Correctness. Requirements Evolution, Journal of Information and Software Technology 45 (2003)

    Google Scholar 

  10. Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging Inconsistency in Software Development. Software Development Computer 33(4), 1–33 (2000)

    Google Scholar 

  11. Sharma, S., Pandey, S.: Integrating AI techniques in Requirement Phase: A Literature Review. In: IJCA Proceedings on 4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit Confluence, pp. 21–25 (2013)

    Google Scholar 

  12. Zhu, A., Jin, A.: Inconsistency Measurement of Software Requirements Specifications: An Ontology-Based Approach. In: Engineering of Complex Computer Systems, pp. 402–410 (2005)

    Google Scholar 

  13. Siegemund, K., Thomas, E., Zhao, Y., Pan, J., Assmann, U.: Towards ontology-driven requirements engineering. In: Workshop Semantic Web Enabled Software Engineering at 10th International Semantic Web Conference (ISWC), pp. 1–6 (2011)

    Google Scholar 

  14. Spanoudakis, G., Zisman, A.: Inconsistency Management in Software Engineering: Survey and Open Research Issues. In: Handbook of Software Engineering and Knowledge Engineering, pp. 329–380 (2001)

    Google Scholar 

  15. Boehm, B.W.: Verifying and validating software requirements and design specifications. IEEE Software (1), 75–88 (1984)

    Google Scholar 

  16. CESAR_D_SP2_R3.3_M3_Vol4_v1.000_PU Project, http://www.cesarproject.eu/

  17. Castaneda, V., Ballejos, L., Caliusco, M., Galli, M.: The Use of Ontologies in Requirements Engineering. Global Journal of Researches in Engineering 10 (6) (Ver 1.0), 2–7 (2010)

    Google Scholar 

  18. Ceccato, M.: Ambiguity Identification and Measurements in Natural Language Texts

    Google Scholar 

  19. Gasevic, D., Kaviani, N., Milanovi, M.: Ontologies and Software Engineering. In: International Handbooks on Information Systems, pp. 593–615. Springer (2009)

    Google Scholar 

  20. Shingler, R., Fadin, G., Umiliacchi, G.P.: From rcm to predictive maintenance: The integrail approach. In: 4th IET International Conference on Railway Condition Monitoring, pp. 1–5 (2008)

    Google Scholar 

  21. De Ambrosi, C., Ghersi, C., Tacchella, A.: An ontology-based condition analyzer for fault classification on railway vehicles. In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS, vol. 5579, pp. 449–458. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Lodemann, M., Luttenberger, N.: Ontology-Based Railway Infrastructure Verification. In: Proceeding KMIS 2010, pp. 176–181 (2010)

    Google Scholar 

  23. Verstichel, S., Ongenaea, F., Loeve, L., Vermeulen, F., Dings, P., Dhoedt, B., Dhaene, T., De Turck, F.: Efficient data integration in the railway domain through an ontology-based methodology. Transportation Research Part C: Emerging Technologies 19(4), 617–643 (2011)

    Article  Google Scholar 

  24. Kannan, S., Thangavelu, A., Kalivaradhan, R.: An intelligent driver assistance system (idas) for vehicle safety modelling using ontology approach. International Journal of Ubicomp (2010)

    Google Scholar 

  25. Lanfranchi, V., Bhagdev, R., Chapman, S., Ciravegna, F., Petrelli, D.: Extracting and Searching Knowledge for the Aerospace Industry. In: ESTC (2007)

    Google Scholar 

  26. Bonasso, R., Boddy, M., Kortenkamp, D., Bell, S.: Ontological Models To Support Space Operations

    Google Scholar 

  27. Keller, R., Berrios, D., Wolfe, S., Hall, D., Sturken, I.: Semantic Integration of Heterogeneous NASA Mission Data Sources

    Google Scholar 

  28. Malin, J., Throop, D.: Basic Concepts and Distinctions for an Aerospace Ontology of Functions, Entities and Problems. In: Aerospace Conference. IEEE (2007)

    Google Scholar 

  29. Kuofie, E.J.: RaDEX: A Rationale-based Ontology for Aerospace Design Explanation. Master of Science Programme Business Information Technology University of Twente

    Google Scholar 

  30. Verhagen, W., Curran, R.: Ontological Modelling of the Aerospace Composite Manufacturing Domain in Improving Complex Systems Today, pp. 215–222 (2011)

    Google Scholar 

  31. Schumann, B., Scanlany, J., Fangohrz, H.: A Generic Unifying Ontology for Civil Un-manned Aerial. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM (2012)

    Google Scholar 

  32. Dittmann, L., Rademacher, T., Zelewski, S.: Performing FMEA Using Ontologies. In: 18th International Workshop on Qualitative Reasoning, Evanston, USA, pp. 209–216 (2004)

    Google Scholar 

  33. Bogusch, R., Gerlach, S.: Optimierungen in Requirements-Engineering in der Praxis

    Google Scholar 

  34. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy (1997)

    Google Scholar 

  35. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. WordNet: An Electronic Lexical Database 49(2), 265–283 (1998)

    Google Scholar 

  36. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning, vol. 1, pp. 296–304 (1998)

    Google Scholar 

  37. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy (1995)

    Google Scholar 

  38. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138 (1998)

    Google Scholar 

  39. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  40. Zazzaro, G., Gigante, G., Zaccariello, E., Ficco, M., Di Martino, B.: Supporting Development of Certified Aeronautical Components by applying Text Analysis Technique. In: Proceedings of the International Conference on Complex, Intelligent and Software Intensive Systems, CISIS-2014 (July 2014)

    Google Scholar 

  41. Venticinque, A., Mazzocca, N., Venticinque, S., Ficco, M.: Semantic support for log analysis of Safety-Critical embedded systems. In: Proc. of the 13th European Dependable Computing Conference (EDCC 2014), Newcastle, UK (May 2014)

    Google Scholar 

  42. Ficco, M., Daidone, A., Coppolino, L., Romano, L., Bondavalli, A.: An event correlation approach for fault diagnosis in SCADA infrastructures. In: Proc. of the 13th European Workshop on Dependable Computing (EWDC 2011), pp. 15–20 (2011)

    Google Scholar 

  43. Leveson, N.: Completeness in formal specification language design for process-control systems. In: Proceedings of the Third Workshop on Formal Methods in Software Practice, pp. 75–87 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Gigante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gigante, G., Gargiulo, F., Ficco, M. (2015). A Semantic Driven Approach for Requirements Verification. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds) Intelligent Distributed Computing VIII. Studies in Computational Intelligence, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-319-10422-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10422-5_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10421-8

  • Online ISBN: 978-3-319-10422-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics